Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Usernameheureka
Score26397
Membership
Stats
Questions 17
Answers 5678

 #2
avatar+26397 
+7

The Lucas sequence is the sequence 1, 3, 4, 7, 11, where the first term is 1,

the second term is 3 and each term after that is the sum of the previous two terms.

What is the remainder when the 100th term of the sequence is divided by 8?

 

nLnLn(mod8)11123334447151136182729384719764101233111991123222135211148433151364416220711007920708398483722531271 or 7

 

The cycle of Ln(mod8) is 12 :1, 3, 4, 1, 3, 2, 3, 1, 4, 3, 1, 2

 

To n=100 we have 1008=12 full cycles and a remainder of 4.And the 4th value in the cycle is 1

 

The remainder when the 100th term of the sequence L100=792070839848372253127 is divided by 8 is 1 or what's the same is 7 

 

laugh

Feb 11, 2019
 #3
avatar+26397 
+8

Find the value of x if

 
11+12+13+14+1x=6796

 

6796=11+12+13+14+1x(1+12+13+14+1x)67=9667+672+13+14+1x=96672+13+14+1x=9667672+13+14+1x=29(2+13+14+1x)29=6758+293+14+1x=67293+14+1x=6758293+14+1x=9(3+14+1x)9=2927+94+1x=2994+1x=292794+1x=2(4+1x)2=98+2x=92x=982x=12=x

 

laugh

Feb 8, 2019
 #2
avatar+26397 
+8

Consider the vectors

v=(13) and  w=(32)
Can you write u=(12)
as a linear combination of  v and w ?
If no, answer with 0.
If yes, find coefficients a and b such a(13)+b(32)=(12)
and answer with ab.

 

v= ?

vv=0(13)(31)=v=3+3=0

 

w= ?

ww=0(32)(23)=w=6+6=0

 

a,b= ?

I.II.av+bw=u|v|w|I.avv=0+bwv=uvbwv=uvb=uvwvb=(12)(31)(32)(31)b=3+29+2b=17b=17II.avw+bww=0=uwavw=uwa=uwvwa=(12)(23)(13)(23)a=2+62+9a=47ab=4717=4771ab=4

 

 

laugh

Feb 8, 2019
 #2
avatar+26397 
+8

A square $DEFG$ varies inside equilateral triangle $ABC,$
so that $E$ always lies on side $\overline{AB},$ $F$ always lies on side $\overline{BC},$
and $G$ always lies on side $\overline{AC}.$
The point $D$ starts on side $\overline{AB},$ and ends on side $\overline{AC}.$
The diagram below shows the initial position of square $DEFG,$ an intermediate position, and the final position.

 

Show that as square DEFG varies, the height of point D above line BC remains constant.

 

Let ¯DH=h the height of point D above line ¯BC Let s the side of the square DEFG Let ¯DF=2s Let EFD=45 Let BFE=α Let CFG=90α The equilateral triangle ABC has the angles 606060 and the sides aaa

 

In the rectangular triangle DHF the following applies:

sin(α+45)=h2s2sin(α+45)=hs|2sin(α+45)=sin(α)+cos(α)sin(α)+cos(α)=hsh=ssin(α)+scos(α)

 

Let ¯BC=a is the side of the equilateral triangle ABC

a=¯BM+¯MF+¯FN+¯NC¯BM=ssin(α)tan(60)¯MF=scos(α)¯FN=ssin(α)¯NC=scos(α)tan(60)a=ssin(α)tan(60)+scos(α)+ssin(α)+scos(α)tan(60)a=ssin(α)+scos(α)+(ssin(α)+scos(α))1tan(60)a=(ssin(α)+scos(α))(1+1tan(60))|h=ssin(α)+scos(α)a=h(1+1tan(60))|tan(60)=3a=h(1+13)a=h(3+13)h=a(31+3)

 

So the height of point D above line BC remains constant.

 

laugh

Feb 8, 2019
 #7
avatar+26397 
+7

Maximum Function Help!
If x and y are real and x2+y2=1, compute the maximum value of (x+y)2.

 

x2+y2=1  is a circle with a radius of 1.

 

A circle can be defined as the locus of all points that satisfy the equations
x=rcos(α)y=rsin(α)
where x,y are the coordinates of any point on the circle, r is the radius of the circle and
α is the parameter - the angle subtended by the point at the circle's center.

 

We substitute:

x2+y2=1|x=cos(α)y=sin(α)sin2(α)+cos2(α)=1

 

Maximul value:

(x+y)2max|x=cos(α)y=sin(α)=(sin(α)+cos(α))2=sin2(α)+cos2(α)+2sin(α)cos(α)|sin2(α)+cos2(α)=1=1+2sin(α)cos(α)|2sin(α)cos(α)=sin(2α)=1+sin(2α)|The sin-function is max at 1 =1+1(x+y)2max=2

 

The maximum value of (x+y)2 is 2

 

laugh

Feb 7, 2019