We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
227
2
avatar

A square $DEFG$ varies inside equilateral triangle $ABC,$ so that $E$ always lies on side $\overline{AB},$ $F$ always lies on side $\overline{BC},$ and $G$ always lies on side $\overline{AC}.$ The point $D$ starts on side $\overline{AB},$ and ends on side $\overline{AC}.$ The diagram below shows the initial position of square $DEFG,$ an intermediate position, and the final position.

Show that as square DEFG varies, the height of point D above line BC remains constant.

 Feb 7, 2019

Best Answer 

 #2
avatar+22554 
+8

A square $DEFG$ varies inside equilateral triangle $ABC,$
so that $E$ always lies on side $\overline{AB},$ $F$ always lies on side $\overline{BC},$
and $G$ always lies on side $\overline{AC}.$
The point $D$ starts on side $\overline{AB},$ and ends on side $\overline{AC}.$
The diagram below shows the initial position of square $DEFG,$ an intermediate position, and the final position.

 

Show that as square DEFG varies, the height of point D above line BC remains constant.

 

\(\text{Let $\overline{DH}=h $ the height of point $D$ above line $\overline{BC}$ } \\ \text{Let ${\color{red}s} $ the side of the square $DEFG$ } \\ \text{Let $\overline{DF}=\sqrt{2}\color{red}s$ } \\ \text{Let $\angle EFD = 45^{\circ}$ } \\ \text{Let $\angle BFE = \alpha$ } \\ \text{Let $\angle CFG = 90^{\circ}-\alpha$ } \\ \text{The equilateral triangle $ABC$ has the angles $60^{\circ}$, $60^{\circ}$, $60^{\circ}$ and the sides $a$, $a$, $a$. }\)

 

In the rectangular triangle DHF the following applies:

\(\begin{array}{|rcll|} \hline \sin(\alpha + 45^{\circ}) &=& \dfrac{h}{\sqrt{2}\color{red}s} \\\\ \sqrt{2}\sin(\alpha + 45^{\circ}) &=& \dfrac{h}{\color{red}s} \quad | \quad \sqrt{2}\sin(\alpha + 45^{\circ}) = \sin(\alpha) + \cos(\alpha) \\\\ \sin(\alpha) + \cos(\alpha) & = & \dfrac{h}{\color{red}s} \\\\ \mathbf{h}& \mathbf{=} & \mathbf{{\color{red}s}\sin(\alpha) + {\color{red}s}\cos(\alpha)} \\ \hline \end{array}\)

 

\(\text{Let $\overline{BC}=a $ is the side of the equilateral triangle $ABC$. }\)

\(\begin{array}{|rcll|} \hline a &=& \overline{BM} + \overline{MF} +\overline{FN} + \overline{NC} \\ && \overline{BM} = \dfrac{s\sin(\alpha)}{\tan(60^{\circ})} \\ && \overline{MF} = s\cos(\alpha) \\ && \overline{FN} = s\sin(\alpha) \\ && \overline{NC} = \dfrac{s\cos(\alpha)}{\tan(60^{\circ})} \\ a &=& \dfrac{ {\color{red}s} \sin(\alpha)}{\tan(60^{\circ})} + {\color{red}s}\cos(\alpha) +{\color{red}s}\sin(\alpha) + \dfrac{{\color{red}s}\cos(\alpha)}{\tan(60^{\circ})} \\ a &=& {\color{red}s}\sin(\alpha) +{\color{red}s}\cos(\alpha) + \Big({\color{red}s}\sin(\alpha) +{\color{red}s}\cos(\alpha)\Big) \dfrac{1}{ \tan(60^{\circ}) } \\ a &=& \Big({\color{red}s}\sin(\alpha) +{\color{red}s}\cos(\alpha)\Big) \left( 1+\dfrac{1}{ \tan(60^{\circ}) } \right) \quad | \quad \mathbf{h={\color{red}s}\sin(\alpha) + {\color{red}s}\cos(\alpha)} \\ a &=& h \left( 1+\dfrac{1}{ \tan(60^{\circ}) } \right) \quad | \quad \tan(60^{\circ}) = \sqrt{3} \\ a &=& h \left( 1+\dfrac{1}{ \sqrt{3} } \right) \\ a &=& h \left( \dfrac{ \sqrt{3}+1}{ \sqrt{3} } \right) \\ \mathbf{h}& \mathbf{=} & \mathbf{a \left( \dfrac{ \sqrt{3} }{ 1+\sqrt{3}} \right)} \\ \hline \end{array}\)

 

So the height of point D above line BC remains constant.

 

laugh

 Feb 8, 2019
 #1
avatar
+1

Pick out the answer you like from these 3 links:

 

https://web2.0calc.com/questions/a-square-defg-varies-inside-equilateral-triangle
https://web2.0calc.com/questions/help_92263
https://web2.0calc.com/questions/help-needed-please-geometry

 Feb 7, 2019
 #2
avatar+22554 
+8
Best Answer

A square $DEFG$ varies inside equilateral triangle $ABC,$
so that $E$ always lies on side $\overline{AB},$ $F$ always lies on side $\overline{BC},$
and $G$ always lies on side $\overline{AC}.$
The point $D$ starts on side $\overline{AB},$ and ends on side $\overline{AC}.$
The diagram below shows the initial position of square $DEFG,$ an intermediate position, and the final position.

 

Show that as square DEFG varies, the height of point D above line BC remains constant.

 

\(\text{Let $\overline{DH}=h $ the height of point $D$ above line $\overline{BC}$ } \\ \text{Let ${\color{red}s} $ the side of the square $DEFG$ } \\ \text{Let $\overline{DF}=\sqrt{2}\color{red}s$ } \\ \text{Let $\angle EFD = 45^{\circ}$ } \\ \text{Let $\angle BFE = \alpha$ } \\ \text{Let $\angle CFG = 90^{\circ}-\alpha$ } \\ \text{The equilateral triangle $ABC$ has the angles $60^{\circ}$, $60^{\circ}$, $60^{\circ}$ and the sides $a$, $a$, $a$. }\)

 

In the rectangular triangle DHF the following applies:

\(\begin{array}{|rcll|} \hline \sin(\alpha + 45^{\circ}) &=& \dfrac{h}{\sqrt{2}\color{red}s} \\\\ \sqrt{2}\sin(\alpha + 45^{\circ}) &=& \dfrac{h}{\color{red}s} \quad | \quad \sqrt{2}\sin(\alpha + 45^{\circ}) = \sin(\alpha) + \cos(\alpha) \\\\ \sin(\alpha) + \cos(\alpha) & = & \dfrac{h}{\color{red}s} \\\\ \mathbf{h}& \mathbf{=} & \mathbf{{\color{red}s}\sin(\alpha) + {\color{red}s}\cos(\alpha)} \\ \hline \end{array}\)

 

\(\text{Let $\overline{BC}=a $ is the side of the equilateral triangle $ABC$. }\)

\(\begin{array}{|rcll|} \hline a &=& \overline{BM} + \overline{MF} +\overline{FN} + \overline{NC} \\ && \overline{BM} = \dfrac{s\sin(\alpha)}{\tan(60^{\circ})} \\ && \overline{MF} = s\cos(\alpha) \\ && \overline{FN} = s\sin(\alpha) \\ && \overline{NC} = \dfrac{s\cos(\alpha)}{\tan(60^{\circ})} \\ a &=& \dfrac{ {\color{red}s} \sin(\alpha)}{\tan(60^{\circ})} + {\color{red}s}\cos(\alpha) +{\color{red}s}\sin(\alpha) + \dfrac{{\color{red}s}\cos(\alpha)}{\tan(60^{\circ})} \\ a &=& {\color{red}s}\sin(\alpha) +{\color{red}s}\cos(\alpha) + \Big({\color{red}s}\sin(\alpha) +{\color{red}s}\cos(\alpha)\Big) \dfrac{1}{ \tan(60^{\circ}) } \\ a &=& \Big({\color{red}s}\sin(\alpha) +{\color{red}s}\cos(\alpha)\Big) \left( 1+\dfrac{1}{ \tan(60^{\circ}) } \right) \quad | \quad \mathbf{h={\color{red}s}\sin(\alpha) + {\color{red}s}\cos(\alpha)} \\ a &=& h \left( 1+\dfrac{1}{ \tan(60^{\circ}) } \right) \quad | \quad \tan(60^{\circ}) = \sqrt{3} \\ a &=& h \left( 1+\dfrac{1}{ \sqrt{3} } \right) \\ a &=& h \left( \dfrac{ \sqrt{3}+1}{ \sqrt{3} } \right) \\ \mathbf{h}& \mathbf{=} & \mathbf{a \left( \dfrac{ \sqrt{3} }{ 1+\sqrt{3}} \right)} \\ \hline \end{array}\)

 

So the height of point D above line BC remains constant.

 

laugh

heureka Feb 8, 2019

11 Online Users

avatar