heureka

avatar
Usernameheureka
Score26367
Membership
Stats
Questions 17
Answers 5678

 #1
avatar+26367 
+3

Given triangle ABC,

sinC=(sinA+sinB)/(cosA+cosB),

What is the shape of triangle ABC? 

 

\(\begin{array}{|rcll|} \hline \sin(C) &=& \dfrac{\sin(A)+\sin(B)}{\cos(A)+\cos(B)} \\ && \boxed{\sin(A)+\sin(B) =2\cdot \sin\left(\dfrac{A+B}{2}\right)\cdot \cos\left(\dfrac{A-B}{2}\right)} \\ && \boxed{\cos(A)+\cos(B) =2\cdot \cos\left(\dfrac{A+B}{2}\right)\cdot \cos\left(\dfrac{A-B}{2}\right)} \\ \sin(C) &=& \dfrac{2\cdot \sin\left(\dfrac{A+B}{2}\right)\cdot \cos\left(\dfrac{A-B}{2}\right)} {2\cdot \cos\left(\dfrac{A+B}{2}\right)\cdot \cos\left(\dfrac{A-B}{2}\right)} \\ \sin(C) &=& \dfrac{ \sin\left(\dfrac{A+B}{2}\right) } { \cos\left(\dfrac{A+B}{2}\right) } \\ && \boxed{\sin(C)=\sin\Big(180^\circ-(A+B)\Big)=\sin(A+B)} \\ \sin(A+B) &=& \dfrac{ \sin\left(\dfrac{A+B}{2}\right) } { \cos\left(\dfrac{A+B}{2}\right) } \\ && \boxed{\sin(A+B) =2\cdot \sin\left(\dfrac{A+B}{2}\right)\cdot \cos\left(\dfrac{A+B}{2}\right) } \\ 2\cdot \sin\left(\dfrac{A+B}{2}\right)\cdot \cos\left(\dfrac{A+B}{2}\right) &=& \dfrac{ \sin\left(\dfrac{A+B}{2}\right) } { \cos\left(\dfrac{A+B}{2}\right) } \\ 2\cdot \cos\left(\dfrac{A+B}{2}\right) &=& \dfrac{ 1 } { \cos\left(\dfrac{A+B}{2}\right) } \\ \cos^2\left(\dfrac{A+B}{2}\right) &=& \dfrac{ 1 }{2} \\ \cos\left(\dfrac{A+B}{2}\right) &=& \dfrac{ 1 }{\sqrt{2}} \\ \cos\left(\dfrac{A+B}{2}\right) &=& \dfrac{ \sqrt{2} }{2} \\ \dfrac{A+B}{2} &=& \arccos\left( \dfrac{ \sqrt{2} }{2} \right) \\ \dfrac{A+B}{2} &=& 45^\circ \\ \mathbf{ A+B } & \mathbf{=} & \mathbf{ 90^\circ} \quad \text{ so } C=90^\circ \\ \hline \end{array} \)

The shape is a right-angled triangle

 

laugh

Mar 25, 2019
 #1
avatar+26367 
+3

Triangle ABC has a right angle at C. sinA sinB and sinC forms a geometric sequence.

Please determine the value of sinA. 

 

\(\text{Let $r=$ ratio } \)

 

\(\begin{array}{lcll} C=90^\circ \\ \sin(C) = \sin(90^\circ) = 1 \\ \end{array} \)

 

\(\begin{array}{lcll} B=90^\circ-A \\ \sin(B) = \sin(90^\circ-A) = \cos(A) \\ \end{array} \)

 

Geometric sequence:

\(\begin{array}{|rcll|} \hline a_1 &=& a \\ &=& \sin(A) \\\\ a_2 &=&a\cdot r \quad &| \quad a=\sin(A) \\ &=& \sin(A)\cdot r \quad &| \quad a_2 = \sin(B)=\cos(A)\\ \mathbf{\cos(A)} & \mathbf{=}& \mathbf{\sin(A)\cdot r} \qquad (1) \\\\ a_3 &=& a\cdot r^2 \quad &| \quad a=\sin(A) \\ &=& \sin(A)\cdot r^2 \quad &| \quad a_3 =\sin(C)=1 \\ \mathbf{1} &\mathbf{=}& \mathbf{\sin(A)\cdot r^2} \qquad (2) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \cos(A) &=&\sin(A)\cdot r & (1) \\ r &=& \dfrac{\cos(A)}{\sin(A)} \\ \hline 1 &=& \sin(A)\cdot r^2 & (2) \quad | \quad r = \dfrac{\cos(A)}{\sin(A)} \\ 1 &=& \sin(A)\cdot \left(\dfrac{\cos(A)}{\sin(A)}\right)^2 \\ 1 &=& \sin(A)\cdot \dfrac{\cos^2(A)}{\sin^2(A)} \\ 1 &=& \dfrac{\cos^2(A)}{\sin(A)} \\ \sin(A) &=& \cos^2(A) & \quad | \quad \cos^2(A)=1-\sin^2(A) \\ \sin(A) &=& 1-\sin^2(A) \\ \sin^2(A)+\sin(A) -1 &=& 0 \\\\ \sin(A) &=& \dfrac{-1\pm \sqrt{1-4\cdot(-1)} } {2} \\ \sin(A) &=& \dfrac{-1\pm \sqrt{5} } {2} \\ \sin(A) &=& \dfrac{-1{\color{red}+}\sqrt{5} } {2} \\ \mathbf{\sin(A) } &\mathbf{=}& \mathbf{\dfrac{-1 + \sqrt{5} } {2} } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline r^2 &=& \dfrac{1}{\sin(A)} \\ r &=& \dfrac{1}{\sqrt{\sin(A)}} \\ \mathbf{r} &\mathbf{=}& \mathbf{ \dfrac{1}{\sqrt{\dfrac{-1 + \sqrt{5} } {2}}} }\\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline a_1 = \sin(A) &=& \dfrac{-1 + \sqrt{5} } {2} \\ a_2 = \sin(B) &=& \sqrt{\dfrac{-1 + \sqrt{5} } {2}} \\ a_3 = \sin(C) &=& 1 \\ \hline \end{array} \)

 

The value of \(\sin(A)\) is  \(\mathbf{\dfrac{-1 + \sqrt{5} } {2} } \) 

 

laugh

Mar 25, 2019
 #2
avatar+26367 
+2

1.
Let z be a complex number such that \(|z - 12| + |z - 5i| = 13\).
Find the smallest possible value of \(|z|\).

 

\(\text{Let $z=a+bi$ } \\ \text{Let $|z|=\sqrt{a^2+b^2}$ } \)

\(\begin{array}{|rcll|} \hline z - 12 &=& a+bi - 12 \\ &=&(a-12) +bi \\ |z-12| &=& \sqrt{(a-12)^2+b^2 } \\ \hline z - 5i &=& a+bi - 5i \\ &=& a + (b-5)i \\ |z - 5i| &=& \sqrt{a^2+(b-5)^2} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{|z - 12| + |z - 5i|} & \mathbf{=}& \mathbf{13} \\\\ \sqrt{(a-12)^2+b^2 } + \sqrt{a^2+(b-5)^2} &=& 13 \\ \sqrt{(a-12)^2+b^2 } &=& 13- \sqrt{a^2+(b-5)^2} \quad | \quad \text{square both sides} \\ (a-12)^2+b^2 &=& \left( 13- \sqrt{a^2+(b-5)^2} \right)^2 \\ (a-12)^2+b^2 &=& 13^2-26\sqrt{a^2+(b-5)^2}+ a^2+(b-5)^2 \\ 26\sqrt{a^2+(b-5)^2} &=& 13^2+ a^2+(b-5)^2-(a-12)^2-b^2 \\ 26\sqrt{a^2+(b-5)^2} &=& 13^2+ a^2+b^2-10b+25-b^2-a^2+24a-12^2 \\ 26\sqrt{a^2+(b-5)^2} &=& 13^2+ -10b+25+24a-12^2 \quad | \quad 13^2-12^2 = 5^2=25 \\ 26\sqrt{a^2+(b-5)^2} &=& 50 -10b +24a \quad | \quad : 2 \\ 13\sqrt{a^2+(b-5)^2} &=& 25 -5b +12a \quad | \quad \text{square both sides} \\ 13^2\left(a^2+(b-5)^2\right) &=& (25-5b+12a)^2 \\ 13^2\left(a^2+(b-5)^2\right) &=& 25^2+25b^2+12^2a^2-250b+24\cdot 25a-120ab \\ 13^2a^2+13^2(b-5)^2 &=& 25^2+25b^2+12^2a^2-250b+24\cdot 25a-120ab \\ 13^2a^2+13^2(b^2-10b+25) &=& 25^2+25b^2+12^2a^2-250b+24\cdot 25a-120ab \\ 13^2a^2+13^2b^2-13^2\cdot 10b+13^2\cdot 25 &=& 25^2+25b^2+12^2a^2-250b+24\cdot 25a-120ab \\ (13^2-12^2)a^2+(13^2-5^2)b^2+13^2\cdot 25 &=& (13^2\cdot 10-250)b+600a-120ab+25^2-13^2\cdot 25 \\ 5^2a^2+12^2b^2&=& 1440b+600a-120ab-3600 \\ (5^2a^2+120ab+12^2b^2) &=& 120(5a+12b)-3600 \\ (5a+12b)^2 &=& 120(5a+12b)-3600 \\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline (5a+12b)^2 &=& 120(5a+12b)-3600 \\ (5a+12b)^2 -120(5a+12b)+3600 &=& 0 \\\\ 5a+12b &=& \dfrac{120\pm \sqrt{120^2-4\cdot 3600}}{2} \\ 5a+12b &=& \dfrac{120\pm 0}{2} \\ 5a+12b &=& \dfrac{120}{2} \\ \mathbf{ 5a+12b } &\mathbf{=}& \mathbf{60} \quad \text{this is a line!!! }\\ \text{or}\quad b&=&5-\dfrac{5}{12}a \\ \hline \end{array} \)

 

The normal vector of this line \(5a+12b-60=0\), perpendicular to the line is \(\vec{n}=\dbinom{5}{12}\)

\(\begin{array}{|rcll|} \hline \vec{n_0} &=& \dfrac{1}{\sqrt{5^2+12^2}} \dbinom{5}{12} \\\\ &=& \dfrac{1}{\sqrt{13^2}} \dbinom{5}{12} \\\\ &=& \dfrac{1}{13} \dbinom{5}{12} \\\\ &=& \begin{pmatrix} \dfrac{5}{13}\\ \dfrac{12}{13} \end{pmatrix} \\\\ |z|_{\text{min}} &=& \dbinom{0}{5}\cdot \begin{pmatrix} \dfrac{5}{13}\\ \dfrac{12}{13} \end{pmatrix} \\ &=& 0\cdot\dfrac{5}{13}+5\cdot \dfrac{12}{13} \\\\ & = & \dfrac{5\cdot 12}{13} \\\\ & = & \dfrac{60}{13} \\\\ \mathbf{ |z|_{\text{min}} } & \mathbf{=} & \mathbf{4.61538461538} \\ \hline \end{array}\)

 

The smallest possible value of |z| is 4.61538461538

 

laugh

Mar 22, 2019