Given triangle ABC,
sinC=(sinA+sinB)/(cosA+cosB),
or in LaTeX, sinC=sinA+sinBcosA+cosB
What is the shape of triangle ABC?
Given triangle ABC,
sinC=(sinA+sinB)/(cosA+cosB),
What is the shape of triangle ABC?
sin(C)=sin(A)+sin(B)cos(A)+cos(B)sin(A)+sin(B)=2⋅sin(A+B2)⋅cos(A−B2)cos(A)+cos(B)=2⋅cos(A+B2)⋅cos(A−B2)sin(C)=2⋅sin(A+B2)⋅cos(A−B2)2⋅cos(A+B2)⋅cos(A−B2)sin(C)=sin(A+B2)cos(A+B2)sin(C)=sin(180∘−(A+B))=sin(A+B)sin(A+B)=sin(A+B2)cos(A+B2)sin(A+B)=2⋅sin(A+B2)⋅cos(A+B2)2⋅sin(A+B2)⋅cos(A+B2)=sin(A+B2)cos(A+B2)2⋅cos(A+B2)=1cos(A+B2)cos2(A+B2)=12cos(A+B2)=1√2cos(A+B2)=√22A+B2=arccos(√22)A+B2=45∘A+B=90∘ so C=90∘
The shape is a right-angled triangle