We seat April first. She has 8 choices. We seat May next. She has 2 choices: two spots to the left of April or two spots to the right of April. Then, the remaining six members can sit in ways. This appears to give a total of 8*2*6! seatings. However, because two seatings are considered the same if one is a rotation of the other, each distinct seating is counted 8 times in this product, once for each possible location of April. So, we must divide by 8 to give a total of 2*6! = 2*720 = 1440 seatings.
We might have instead started by noting that it doesn't matter where April sits. She starts by sitting anywhere, and we count the number of ways the members sit relative to April. May still has 2 choices: two spots to the left of April or two to the right of April. The remaining six participants then can be seated in 6! ways, for a total of 2*6! = 1440 seatings, as before.