Melody

avatar
UsernameMelody
Score118724
Membership
Stats
Questions 900
Answers 33647

-4
846
3
avatar+118724 
Melody  Feb 11, 2022
 #71
avatar+118724 
+3

BOXES FROM NAUSEATED      18/5/15

Original         http://web2.0calc.com/questions/latex-form-part-2#r52

 

\setlength{\fboxsep}{20pt}\fbox{Hi Melody. Here are a few ways to do "quick" boxes} \\\\

$$\setlength{\fboxsep}{20pt}\fbox{Hi Melody. Here are a few ways to do "quick" boxes} \\\\$$

\setlength{\fboxsep}{20pt}\fbox{} \\\\

\setlength{\fboxsep}{15pt}\fbox{} \\\\

$$\setlength{\fboxsep}{20pt}\fbox{}\\\\
setlength{\fboxsep}{15pt}\fbox{} \\\\$$

 

\setlength{\fboxsep}{10pt}\fbox{} \\\\

setlength{\fboxsep}{5pt}\fbox{} \\\\

$$\setlength{\fboxsep}{10pt}\fbox{} \\\\
setlength{\fboxsep}{5pt}\fbox{} \\\\$$

 

\setlength{\fboxsep}{20pt} \fbox{ } \leftarrow ${Comds are the same, except for} \\\\

$$\setlength{\fboxsep}{20pt} \fbox{ } \leftarrow ${Comds are the same, except for} \\\\$$

 

\setlength{\fboxsep}{15pt}\fbox{ } \leftarrow ${ one space for additional [x]pt width}

$$\setlength{\fboxsep}{15pt}\fbox{ } \leftarrow ${ one space for additional [x]pt width}$$

 

\setlength{\fboxsep}{10pt}\fbox{ } \\\\

setlength{\fboxsep}{5pt}\fbox{ } \\\\

$$\setlength{\fboxsep}{10pt}\fbox{ } \\\\
setlength{\fboxsep}{5pt}\fbox{ } \\\\$$

 

\setlength{\fboxrule}{3pt}\setlength{\fboxsep}{6pt} \fbox{ } \leftarrow ${ fboxrule Comds affect border boldness}\\\\

$$\setlength{\fboxrule}{3pt}\setlength{\fboxsep}{6pt} \fbox{ } \leftarrow ${ fboxrule Comds affect border boldness}\\\\$$

 

\setlength{\fboxrule}{5pt}\setlength{\fboxsep}{15pt} \fbox{? } \leftarrow ${ Text (if used) is Center justified } \\\\

$$\setlength{\fboxrule}{5pt}\setlength{\fboxsep}{15pt} \fbox{? } \leftarrow ${ Text (if used) is Center justified } \\\\$$

 

\setlength{\fboxrule}{3pt}\setlength{\fboxsep}{15pt} \fbox{ End of Examples from }

$$\setlength{\fboxrule}{3pt}\setlength{\fboxsep}{15pt} \fbox{ End of Examples from }$$

 

\setlength{\fboxrule}{5pt}\setlength{\fboxsep}{20pt} \fbox{ Your friendly neighborhood Troll }

$$\setlength{\fboxrule}{5pt}\setlength{\fboxsep}{20pt} \fbox{ Your friendly neighborhood Troll }$$

 

 

-------------------------------------------------------------------------------------------------------------

 

 

$$\setlength{\fboxsep}{20pt}\fbox{Hi Melody. Here are a few ways to do "quick" boxes} \\\\
\setlength{\fboxsep}{20pt}\fbox{} \\\\
\setlength{\fboxsep}{15pt}\fbox{} \\\\
\setlength{\fboxsep}{10pt}\fbox{} \\\\
\setlength{\fboxsep}{5pt}\fbox{} \\\\
\setlength{\fboxsep}{20pt} \fbox{ } \leftarrow ${Comds are the same, except for} \\\\
\setlength{\fboxsep}{15pt}\fbox{ } \leftarrow ${ one space for additional [x]pt width} \setlength{\fboxsep}{10pt}\fbox{ } \\
\setlength{\fboxsep}{5pt}\fbox{ } \\\\
setlength{\fboxrule}{3pt}\setlength{\fboxsep}{6pt} \fbox{ } \leftarrow ${ fboxrule Comds affect border boldness}\\\\
\setlength{\fboxrule}{5pt}\setlength{\fboxsep}{15pt} \fbox{? } \leftarrow ${ Text (if used) is Center justified } \\\\
\setlength{\fboxrule}{3pt}\setlength{\fboxsep}{15pt} \fbox{ End of Examples from } \setlength{\fboxrule}{5pt}\setlength{\fboxsep}{20pt} \fbox{ Your friendly neighborhood Troll }$$

.
May 18, 2015
 #8
avatar+118724 
0
May 18, 2015
 #1
avatar+118724 
+11

Let the number of reds be a where a is at least 1

Let the number of whites be b

Let the number of blues be c

Let the number of greens be d

 

The probabilities below are all "Order does not count."

P(WRBG)=P(WBRR)=P(BRRR)=P(RRRR)

The denominators of these are all going to be the same so I am going to look at the numerators only

4!*abcd = (4!/2!)bca(a-1)=(4!/3!)ca(a-1)(a-2)=a(a-1)(a-2)(a-3)

24abcd = 12bca(a-1)=4ca(a-1)(a-2)=a(a-1)(a-2)(a-3)

24bcd = 12bc(a-1)=4c(a-1)(a-2)=(a-1)(a-2)(a-3)

let

24bcd                (1)

12bc(a-1)          (2)

4c(a-1)(a-2)      (3)

(a-1)(a-2)(a-3)      (4)

 

24bcd=12bc(a-1)      (1)=(2)

2d=a-1

$${\mathtt{d}} = {\frac{\left({\mathtt{a}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}$$

 

4c(a-1)(a-2)=(a-1)(a-2)(a-3)         (3)=(4)

4c=a-3

$${\mathtt{c}} = {\frac{\left({\mathtt{a}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}{{\mathtt{4}}}}$$

 

12bc(a-1)  = 4c(a-1)(a-2)             (2)=(3)

3b = (a-2)

$${\mathtt{b}} = {\frac{\left({\mathtt{a}}{\mathtt{\,-\,}}{\mathtt{2}}\right)}{{\mathtt{3}}}}$$

 

SO WE HAVE

$${\mathtt{a}}$$                $${\mathtt{b}} = {\frac{\left({\mathtt{a}}{\mathtt{\,-\,}}{\mathtt{2}}\right)}{{\mathtt{3}}}}$$                  $${\mathtt{c}} = {\frac{\left({\mathtt{a}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}{{\mathtt{4}}}}$$                         $${\mathtt{d}} = {\frac{\left({\mathtt{a}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}$$

 

 

NOW all these must be whole numbers.

a has to be odd   (from d)

a maybe 7, 11    ( looking at c and checking with b)    a=11 works

a=11,     b=3,   c=2,    5

Minimum number of marbles is   11+3+2+5 = 21

 

I have not checked that these numbers work Mellie - you will have to do that!        

May 18, 2015