Heureka 3/8/15
http://web2.0calc.com/questions/how-come-30-99-61-100-is-divisible-by-31#r4
\small{\text{$30 \equiv - 1 \pmod {31}$}}\\
\small{\text{ and $61 \equiv - 1 \pmod {31}$}}\\\\
\small{\text{$(-1)^{99} + (-1)^{100} \stackrel{?}\equiv 0 \pmod{31}$}}\\\\
\small{\text{$-1 + 1 \equiv 0 \pmod{31}$}}\\\\
OUTPUT
$$\small{\text{$30 \equiv - 1 \pmod {31}$}}\\
\small{\text{ and $61 \equiv - 1 \pmod {31}$}}\\\\
\small{\text{$(-1)^{99} + (-1)^{100} \stackrel{?}\equiv 0 \pmod{31}$}}\\\\
\small{\text{$-1 + 1 \equiv 0 \pmod{31}$}}\\\\$$
------------------------------------------
\stackrel{?}\equiv
OUTPUT
$$\stackrel{?}\equiv$$
.