$$\left(\dfrac{3}{x^2}-4x^3\right)^{10}$$
$$\mbox{The (r+1)th term will be }\quad 0\le{r}\le10\quad r\in \mathBb{Z}$$
$$10Cr\times \left(\frac{3}{x^2}\right)^r\times (-4x^3)^{10-r}\\
=10Cr \times 3^r\times(-4)^{10-r}\times \dfrac{1}{x^{2r}}\times (x^3)^{10-r}\\
=10Cr \times 3^r\times(-4)^{10-r}\times x^{-2r}\times x^{30-3r}\\
=10Cr \times 3^r\times(-4)^{10-r}\times x^{-2r+30-3r}\\
=10Cr \times 3^r\times(-4)^{10-r}\times x^{30-5r}$$
You want the constant term so 30-5r=0, r=6
so the term we want is
$$10C6\times 3^6\times (-4)^4 \times x^0$$
etc (correct assuming I didn't make any stupid errors)