Hello Guest,
\(\frac{m}{m^2+5m-6}+\frac{2}{m+6}=\frac{1}{m-1}\) ,
\(\frac{m}{m^2+5m-6}+\frac{2}{m+6}-\frac{1}{m-1}=0\) ,
\(\frac{m}{m^2+6m-m-6}+\frac{2}{m+6}-\frac{1}{m-1}=0\) ,
\(\frac{m}{m*(m+6)-m-6}+\frac{2}{m+6}-\frac{1}{m-1}=0\) ,
\(\frac{m}{m*(m+6)-(m+6)}+\frac{2}{m+6}-\frac{1}{m-1}=0\) ,
\(\frac{m}{(m+6)*(m-1)}+\frac{2}{m+6}-\frac{1}{m-1}=0\) ,
\(\frac{m+2(m-1)-(m+6)}{(m+6)*(m-1)}=0\) ,
\(\frac{m+2(m-1)-m-6}{(m+6)*(m-1)}=0\) ,
\(\frac{2(m-1)-6}{(m+6)*(m-1)}=0\) ,
\(\frac{2m-2-6}{(m+6)*(m-1)}=0\) ,
\(\frac{2m-8}{(m+6)*(m-1)}=0\) ,
\(2m-8=0\) ,
\(2m=8\) ,
\(m=4\) ,
so the solution is \(m=4\) .
Straight