1) \(d={v_0t}+\frac{1}{2}at^2\\ a_{rocket}=\frac{2d}{t^2}=\frac{2*12.4m}{(2s)^2}=6.2\;m/s^2\)
2)\(a=\frac{\Delta v}{\Delta t}=\frac{32\;km/h\;-\;2.8\;km/h}{1.5s}=\frac{29.2\;km/h}{1.5s}\\ \text{Use dimensional analysis to convert to m/s}^2\\ \frac{29.2\;km/h}{1.5s}*\frac{1h}{3600s}*\frac{1000m}{1km}\approx5.41\;m/s^2\)
3) \(d=v_0t+\frac{1}{2}at^2\\ a=\frac{2d}{t^2}=\frac{2*18.3m}{(2.74s)^2}\approx4.88\;m/s^2\)
4)\(v=v_0+at\\ a=\frac{v-v_0}{t}=\frac{46.7m/s\;-\;2.3m/s}{7s}\approx6.34\;m/s^2\)
5)\(v=v_0+at\\ a=\frac{v-v_0}{t}=\frac{0-6.23m/s}{82s}\approx-0.076\;m/s^2\)
.