We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
440
5
avatar+118 

Find the inverse of the function \(f(x)=\frac{2^x}{1+2^x}\)

 Mar 8, 2018
 #1
avatar+103695 
+1

This is not correct  sad     Can anyone spot what mistake I have made??

 

\(f(x)=\frac{2^x}{1+2^x}\\ let \\ y=\frac{2^x}{1+2^x}\\ \text{An initial inspection tells me that y>0}\\ \text{make x the subject}\\ y=\frac{2^x}{1+2^x}\\ \frac{1}{y}=\frac{1+2^x}{2^x}\\ \frac{1}{y}=\frac{1}{2^x}+\frac{2^x}{2^x}\\ \frac{1}{y}=\frac{1}{2^x}+1\\ \frac{1}{y}-1=2^{-x}\\ \frac{1-y}{y}=2^{-x}\\ log_2({\frac{1-y}{y}})=log_2(2^{-x})\\ log_2({\frac{1-y}{y}})=-x*log_2(2)\\ log_2({\frac{1-y}{y}})=-x\\ x=-log_2({\frac{1-y}{y}})\\ x=log_2(({\frac{1-y}{y}})^{-1})\\ x=-log_2\left({\frac{y}{1-y}}\right)\\ \therefore f^{-1}(x)=-log_2\left({\frac{x}{1-x}}\right)\\ \)

 

I have graphed this here

https://www.desmos.com/calculator/qt6xarwxbp

AND IT IS NOT CORRECT

 

Can anyone spot what mistake I have made??

 Mar 8, 2018
edited by Melody  Mar 8, 2018
 #5
avatar+103695 
+3

Thanks Heureka,

I found my own error too :)

It was just a careless sign error in my last line.

 

\(x=log_2(({\frac{1-y}{y}})^{-1})\\ x=-log_2\left({\frac{y}{1-y}}\right) \qquad \text{This should have been } \color{red}{x=+log_2\left({\frac{y}{1-y}}\right) }\\ \therefore f^{-1}(x)=\color{red}{+} log_2\left({\frac{x}{1-x}}\right)\\ \text{Using the change of base rule this is exactly the same as Heureka's answer.} \)

Melody  Mar 8, 2018
 #2
avatar+68 
+1

I tried it by myself an failed...

Then I used the internet and found the answer with steps.

I checked it out in Desmos and it worked. https://www.desmos.com/calculator/qt6xarwxbp

 

Thank yooooou internet. xD

 Mar 8, 2018
 #4
avatar+103695 
+1

Your answer from the internet is no doubt correct, it also matches Heureka's answer I think.

BUT

Your desmos graph [  https://www.desmos.com/calculator/qt6xarwxbp ] is incorrect.

You have graphed it in base 2 NOT in base e.

 

As you can see, your two graphs are not reflections of one another over the line y=x

That is how I know it is the wrong answer (the answer that you have graphed is wrong I mean)

Melody  Mar 8, 2018
 #3
avatar+23071 
+2

Find the inverse of the function

\(\displaystyle f(x)=\frac{2^x}{1+2^x}\)

f(x)=\frac{2^x}{1+2^x}

 

\(\begin{array}{|rcll|} \hline y &=& \dfrac{2^x}{1+2^x} \quad & | \quad \text{substitute $u =2^x$ } \\\\ y &=& \dfrac{u}{1+u} \\\\ y(1+u) &=& u \\ y+yu &=& u \\ y &=& u-yu \\ y &=& u(1-y) \\\\ u&=& \dfrac{y}{1-y} \quad & | \quad \text{substitute $u =2^x$ } \\\\ 2^x&=& \dfrac{y}{1-y} \quad & | \quad \text{ $\ln{}$ both sides } \\\\ \ln(2^x) &=& \ln\left( \dfrac{y}{1-y} \right) \\\\ x\ln(2) &=& \ln\left( \dfrac{y}{1-y} \right) \\\\ x &=& \dfrac{ \ln\left( \dfrac{y}{1-y} \right) } {\ln(2) } \quad & | \quad x \Leftrightarrow y \\\\ \mathbf{f^{-1}} &\mathbf{=}&\mathbf{ \dfrac{ \ln\left( \dfrac{x}{1-x} \right) } {\ln(2) } } \\ \hline \end{array}\)

 

 

laugh

 Mar 8, 2018

29 Online Users

avatar
avatar