We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
98
7
avatar+117 

Let the domain of the function f(x) be the interval (-4,4). What is the domain of the function \(f(\frac{x-2}{x+2})\)?

 Feb 15, 2019
 #1
avatar+5038 
+4

\(\text{we have 3 conditions} \\ -4 < \dfrac{x-2}{x+2} < 4 \text{ and } (x+2) \neq 0\\\)

 

\(\text{if }x+2>0 \text{ i.e. if }x > -2 \\ -4x-8 < x-2 < 4x+8\\ -6 < 5x \wedge -3x < 10\\ \dfrac{-6}{5} < x \wedge x > -\dfrac{10}{3}\\ \text{distilling all this we end up with simply }-\dfrac{6}{5} < x\)

 

\(\text{if }x+2< 0 \text{ i.e. if } x < -2\\ -8x-8 > x -2 > 4x+8\\ -6 > 9x \wedge -3x > 10\\ -\dfrac{2}{3} > x \wedge x < -\dfrac{10}{3}\\ \text{distiliing all this we end up with }x < -\dfrac{10}{3}\)

 

\(\text{Combining these results we get}\\ x \in \left(-\infty, -\dfrac{10}{3}\right) \cup \left(-\dfrac{6}{5}, \infty\right)\)

.
 Feb 15, 2019
 #2
avatar+100776 
+3

Hi Rom,

I was trying to work out what your  \(\wedge \)    (\wedge)  meant ....

 

It intersection I think  ??       \(\cap\)              \cap   

 

I have never seen a wedge used before....

Melody  Feb 15, 2019
 #3
avatar+5038 
+2

it just means logical AND

 

I use it when sets aren't obviously involved but you need to meet 2 or more conditions.

Rom  Feb 15, 2019
 #4
avatar+100776 
+2

ok so you use    \cap = intersection    only for sets

           and      \wedge  for the same thing when it is not written in set notation.

 

But 

you use  \cup = union    for sets and non-sets notation...

 

Thanks  Rom.

Melody  Feb 15, 2019
 #5
avatar+5038 
+3

how closely I stick to those rules is inversely proportional to how many beers I've had... :D

Rom  Feb 15, 2019
 #6
avatar+100776 
+2

That is understandable.    wink

Melody  Feb 15, 2019
 #7
avatar+5038 
+2

oh.. yeah.. intervals get \cup too... intervals are like sets

Rom  Feb 15, 2019

23 Online Users

avatar
avatar
avatar