1. Let the roots = n - d, n , n + d
The sum of the roots = 3n = - a ⇒ a = -3n ⇒ a^3 = -27n^3 ⇒ 2a^3 = -54n^3
The product of the roots, taken 2 at a time are
n ( n - d) + n ( n +d) + (n + d) ( n - d) = b
3n^2 - d^2 = b
And the product of all three roots = - c
n (n -d)(n + d) = - c
n ( n^2 - d^2) = - c
n^3 - nd^2 = - c
nd^2 - n^3 = c
27nd^2 - 27n^3 = 27c
So
2a^3 + 27c = 9ab ???
-54n^3 + (27nd^2 - 27n^3) = 9 (-3n) (3n^2 - d^2)
-81n^3 + 27nd^2 = -81n^3 + 27nd^2 ........!!!!
