\(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(1\)\(0\) |
\(1\)\(1\) | \(1\)\(2\) | \(1\)\(3\) | \(1\)\(4\) | \(1\)\(5\) | \(1\)\(6\) | \(1\)\(7\) | \(1\)\(8\) | \(1\)\(9\) | \(2\)\(0\) |
\(2\)\(1\) | \(2\)\(2\) | \(2\)\(3\) | \(2\)\(4\) | \(2\)\(5\) | \(2\)\(6\) | \(2\)\(7\) | \(2\)\(8\) | \(2\)\(9\) | \(3\)\(0\) |
\(3\)\(1\) | \(3\)\(2\) | \(3\)\(3\) | \(3\)\(4\) | \(3\)\(5\) | \(3\)\(6\) | \(3\)\(7\) | \(3\)\(8\) | \(3\)\(9\) | \(4\)\(0\) |
\(4\)\(1\) | \(4\)\(2\) | \(4\)\(3\) | \(4\)\(4\) | \(4\)\(5\) | \(4\)\(6\) | \(4\)\(7\) | \(4\)\(8\) | \(4\)\(9\) |
By the chart, you can see that there are:
Fifteen \(1\)'s
Fifteen \(2\)'s
Fifteen \(3\)'s
Fifteen \(4\)'s
Five \(5\)'s
Five \(6\)'s
Five \(7\)'s
Five \(8\)'s
Five \(9\)'s and
Four \(0\)'s (Of course, the zero's would not matter, because they are asking for the sum).
So we are trying to find \(s\), the sum of the digits. We can get the equation \(s = 15(1) + 15(2) + 15(3) + 15(4) + 5(5) + 5(6) + 5(7) + 5(8) + 5(9) \), which is equal to \(s = 15 + 30 + 45 + 60 + 25 + 30 + 35 + 40 + 45\), which we can finally get \(s = 325\)
- Daisy