+0  
 
+2
39
2
avatar+701 

A sequence with \(a_1 = 1\) is defined by  the recurrence relation \(​​a_{n+1} = 2^na_n\)  for all natural numbers n. If \(a_{23} = 2^p\), then what is p?

Lightning  Aug 26, 2018
 #1
avatar+343 
+3

For \(a23\)\(n = 22\). We can set up the equation \({2}^{22}\times a22 = 2p\). We can see that \(a22 = 2^{21}\times a21\). We can keep doing this until we get: \(2^{22+21+20...+3+2+1} \times 1 = 2^p\), so \(p = 22+21+20...+3+2+1 = 253\)

 

- Daisy

dierdurst  Aug 26, 2018
 #2
avatar+701 
+2

Thanks!

Lightning  Aug 26, 2018

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.