We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

#1**+5 **

**Medians AD and BE of triangle ABC are perpendicular. If AD = 15 and BE = 20, **

**then what is the area of triangle ABC?**

not true to scale

\(\begin{array}{|rcll|} \hline A_{\triangle ABC}=A &=& \dfrac{ab\sin{C}}{2} \\ \hline \\ A_{\triangle EDC} &=& \dfrac{\dfrac{ab\sin{C}}{4}}{2} \\\\ &=& \dfrac{\dfrac{ab\sin{C}}{2}}{4} \\\\ &=& \dfrac{A}{4} \\ \hline \\ A_{ABDE} &=& \dfrac{AD\cdot BE}{2} \\\\ &=& \dfrac{15\cdot 20}{2} \\\\ &=& 15\cdot 10 \\\\ &=& 150 \\ \hline \\ A &=& A_{\triangle EDC} + A_{ABDE} \\ A &=& \dfrac{A}{4} + 150 \quad & | \quad \cdot 4 \\ 4A &=& A + 600 \\ 3A &=& 600 \quad & | \quad :3 \\ \mathbf{A} &\mathbf{=}& \mathbf{200} \\ \hline \end{array}\)

The area of triangle ABC is **200**

heureka Aug 20, 2018