We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+5
241
3
avatar+387 

Medians AD and BE of triangle ABC are perpendicular. If AD = 15 and BE = 20, then what is the area of triangle ABC?

 

- Daisy

 Aug 20, 2018
edited by dierdurst  Aug 22, 2018
edited by dierdurst  Aug 24, 2018
 #1
avatar+22172 
+5

Medians AD and BE of triangle ABC are perpendicular. If AD = 15 and BE = 20,

then what is the area of triangle ABC?

 

not true to scale

 

\(\begin{array}{|rcll|} \hline A_{\triangle ABC}=A &=& \dfrac{ab\sin{C}}{2} \\ \hline \\ A_{\triangle EDC} &=& \dfrac{\dfrac{ab\sin{C}}{4}}{2} \\\\ &=& \dfrac{\dfrac{ab\sin{C}}{2}}{4} \\\\ &=& \dfrac{A}{4} \\ \hline \\ A_{ABDE} &=& \dfrac{AD\cdot BE}{2} \\\\ &=& \dfrac{15\cdot 20}{2} \\\\ &=& 15\cdot 10 \\\\ &=& 150 \\ \hline \\ A &=& A_{\triangle EDC} + A_{ABDE} \\ A &=& \dfrac{A}{4} + 150 \quad & | \quad \cdot 4 \\ 4A &=& A + 600 \\ 3A &=& 600 \quad & | \quad :3 \\ \mathbf{A} &\mathbf{=}& \mathbf{200} \\ \hline \end{array}\)

 

The area of triangle ABC is 200

 

laugh

 Aug 20, 2018
edited by heureka  Aug 20, 2018
 #3
avatar
+1

CPPhill: I think heureka's reasoning comes from this property of irregular quadrilateral:

"The line joining the mid-points of any two adjacent sides is parallel to the corresponding diagonal and equal to half of it."

 Aug 20, 2018

31 Online Users

avatar