+0  
 
+3
1059
1
avatar+399 

Let C be a point not on line AE and D a point on line AE such that CD ⊥ AE. Meanwhile, B is a point on line CE such that AB ⊥ CE. If AB = 4, CD = 8, and AE = 5, then what is the length of CE? 

 

- Daisy

 Aug 8, 2018
edited by dierdurst  Aug 22, 2018
 #1
avatar+984 
+1

\(\because \angle E = \angle E, \angle ABE = \angle CDE = 90º\therefore \text {By AA Similarity}, \triangle EBA \sim \triangle EDC.\\ \because \triangle EBA \sim \triangle EDC \therefore \frac{AB}{DC}=\frac{AE}{CE}.\\ \text{Filling in the numbers, we get}: \frac{4}{8}=\frac{5}{CE}.\\ \text{Solving for CE}: 4CE=5\cdot8\Rightarrow CE=10\)

 

The length of CE is 10. 

 

I hope this helped,

 

Gavin. 

 Aug 8, 2018

3 Online Users

avatar
avatar