hectictar

avatar
Usernamehectictar
Score9491
Membership
Stats
Questions 10
Answers 3005

 #1
avatar+9491 
+4

1)     Triangle PQR  is similar to triangle PST , so

 

PQ / PS  =  PR / PT          And  PQ  =  8 ,  PS  =  8 + 6 ,  and  PT  =  10.5 .

 

8 / [8 + 6]  =  PR / 10.5     Multiply both sides of this equation by  10.5 .

 

10.5 * 8 / [8 + 6]  =  PR     Simplify.

 

6  =  PR

 

 

2)     Notice that we have two parallel lines cut by a transversal, and their alternate angles are congruent. So we can be sure that  triangle OMN  is similar to triangle OQP  , which means

 

OQ / OM  =  OP / ON      And  OQ  =  6 ,  OM  =  9 , and  ON  =  25 - OP

 

6 / 9  =  OP / [25 - OP]    Solve for  OP .

 

10  =  OP

 

 

3)     Angle CAB  is a part of both triangles, and both triangles have a right angle.

 

So  triangle ABC  is similar to  triangle ADE  by angle-angle similarity.

 

AB / AC  =  AD / AE      And  AB  =  11 + 10  , AC  =  35 ,  and AE  =  11

 

[11 + 10] / 35  =  AD / 11

 

11 * 21/35  =  AD

 

 

4)     Notice that angle DEF and angle CEB are vertical angles, angle BFD and angle FBC are alternate, and the other two are also alternate. So  triangle DEF  is similar to  triangle CEB .

 

DF / DE  =  CB / CE     Since  CD and CB are sides of the same square, CD = CB = 2 + 5

 

DF / 2  =  [2 + 5] / 5      I'll let you finish solving this for  DF .

 

 

5)     Triangle MNO  is similar to  triangle QPO , so  ∠MNO  =  ∠QPO  =  60°

 

There are  180°  in every triangle. ∠RNO  =  ∠PQO  =  180° - 60° - 66°  =  54°

 

∠MNR  =  ∠MNO - ∠RNO  =  60° - 54°  =  6°

Oct 27, 2017