heureka

avatar
Usernameheureka
Score26367
Membership
Stats
Questions 17
Answers 5678

 #3
avatar+26367 
+14
Dec 4, 2018
 #5
avatar+26367 
+14
Dec 4, 2018
 #3
avatar+26367 
+12

4. 

Given that \(AF=4\sqrt3\) and \(FC=5\sqrt{3}\), what is \(BC\)?

\(\text{Let $BC=x$}\\ \text{Let $AB=y$}\\ \text{Let $ED=z$}\\ \text{Let $BD=H$}\\ \text{Let $EF=h$}\\ \text{Let $AF=4\sqrt3$} \\ \text{Let $FC=5\sqrt{3}$}\\ \text{Let $AC=AF+FC=9\sqrt{3}$}\)

 

\(\begin{array}{|lrcll|} \hline & \cos{(\alpha)} = \dfrac{H}{x} &=& \dfrac{z}{H} \\ (1) & \mathbf{H^2} & \mathbf{=} & \mathbf{xz} \\ \hline \end{array} \)

\(\begin{array}{|lrcll|} \hline & 2A = H\cdot AC &=& xy \\ (2) & \mathbf{H} & \mathbf{=} & \mathbf{\dfrac{xy}{AC}} \\ \hline \end{array}\)

\(\begin{array}{|lrcll|} \hline & x^2+y^2 &=& (AC)^2 \\ (3) & \mathbf{y^2} & \mathbf{=} & \mathbf{(AC)^2-x^2} \\ \hline \end{array}\)

\(\begin{array}{|lrcll|} \hline & \cos{(\alpha)} &=& \dfrac{h}{z} \\ & \tan{(\alpha)} &=& \dfrac{h}{AF} \\ & h = z\cdot \cos{(\alpha)} &=& AF\cdot \tan{(\alpha)} \\ & z &=& AF \cdot \dfrac{\sin{(\alpha)}} {\cos^2{(\alpha)}} \\\\ &&& \sin{(\alpha)} = \dfrac{x}{AC} \\ &&& \cos^2{(\alpha)} = 1-\sin^2{(\alpha)} =\dfrac{(AC)^2-x^2}{(AC)^2} \\\\ (4) & \mathbf{ z } & \mathbf{=} & \mathbf{ AF\cdot \dfrac{AC\cdot x}{(AC)^2-x^2} } \\ \hline \end{array}\)

 

We substitute in (1):

\(\begin{array}{|rcll|} \hline \mathbf{H^2} & \mathbf{=} & \mathbf{xz} \quad & | \quad \mathbf{H} \mathbf{=} \mathbf{\dfrac{xy}{AC}} \\ \dfrac{x^2y^2}{(AC)^2} &=& xz \quad & | \quad \mathbf{ z } \mathbf{=} \mathbf{ AF\cdot \dfrac{AC\cdot x}{(AC)^2-x^2} } \\ \dfrac{x^2y^2}{(AC)^2} &=& \dfrac{AF\cdot AC\cdot x^2}{(AC)^2-x^2} \\ \dfrac{y^2}{(AC)^2} &=& \dfrac{AF\cdot AC}{(AC)^2-x^2} \quad & | \quad \mathbf{y^2} \mathbf{=} \mathbf{(AC)^2-x^2} \\ \dfrac{(AC)^2-x^2}{(AC)^2} &=& \dfrac{AF\cdot AC}{(AC)^2-x^2} \\ \left((AC)^2-x^2\right)^2 &=& AF\cdot (AC)^3 \quad & | \quad \text{sqrt both sides} \\ (AC)^2-x^2 &=& AC\cdot \sqrt{AF\cdot AC} \\ x^2 &=& (AC)^2 - AC\cdot \sqrt{AF\cdot AC} \\ x &=& \sqrt{ (AC)^2 - AC\cdot \sqrt{AF\cdot AC} } \\ \mathbf{x} &\mathbf{=}& \mathbf{\sqrt{ AC\cdot \left( AC - \sqrt{AF\cdot AC} \right)} } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{x} &\mathbf{=}& \mathbf{\sqrt{ AC\cdot \left( AC - \sqrt{AF\cdot AC} \right)} } \quad & | \quad AC = 9\sqrt{3} \qquad AF = 4\sqrt{3} \\ x &=& \sqrt{ 9\sqrt{3}\cdot \left(9\sqrt{3} - \sqrt{108} \right)} \\ x &=& \sqrt{ 243- 9\sqrt{3}\cdot \sqrt{108} } \\ x &=& \sqrt{ 243- 9\sqrt{324} } \\ x &=& \sqrt{ 243- 9\cdot 18 } \\ x &=& \sqrt{ 243- 162 } \\ x &=& \sqrt{ 81 } \\ \mathbf{x} &\mathbf{=}& \mathbf{9} \\ \hline \end{array} \)

 

BC  is 9

 

laugh

Dec 3, 2018