heureka

avatar
Usernameheureka
Score26367
Membership
Stats
Questions 17
Answers 5678

 #6
avatar+26367 
+9
Dec 12, 2018
 #4
avatar+26367 
+9

Hello CPhill,

"how was that method derived":

 

1.)

This is the Legendre Theorem from 1808:

Source: Legendre's Theorem - The Prime Factorization of Factorials https://www.cut-the-knot.org/blue/LegendresTheorem.shtml

 

 

2.)

There is a second nice Theorem from Legendre to solve this problem:

Source: Legendre's Theorem - The Prime Factorization of Factorials https://www.cut-the-knot.org/blue/LegendresTheorem.shtml

 

Example:

The prime factorization of 109!  So \(n = 109\)

What is the exponent of 3?  So \(p = 3\)
\(\begin{array}{|rcll|} \hline 109 \text{ in base } 3: \\ 109_{10} = 11001_3 \\ \hline \end{array} \)

 

The exponent of 3 is:

\(\begin{array}{|rcll|} \hline \text{The exponent of $3$} &=& \dfrac{\overbrace{109}^{=n}-(\overbrace{1+1+0+0+1}^{\text{sum of all the digits in the expansion of $n$ in base $p$}})}{\underbrace{3}_{=p}-1} \\ \text{The exponent of $3$} &=& \dfrac{ 109 - 3}{2} \\\\ \text{The exponent of $3$} &=& \dfrac{ 106}{2} \\\\ \mathbf{\text{The exponent of $3$}} & \mathbf{=} & \mathbf{53} \\ \hline \end{array}\)

 

laugh

Dec 12, 2018
 #4
avatar+26367 
+10

7. 

As shown in the diagram, points B and D are on different sides of line AC. 

We know that Angle B=2*Angle D=60 degrees and that AC=4sqrt(3). 

What is the distance between the circumcenters of Triangle ABC and Triangle ADC?

 

line segments:

\(\text{Let $AC =4\sqrt{3}$ } \\ \text{Let $AG=GC =2\sqrt{3}$ } \\ \text{Let $AE=EC =r$ } \\ \text{Let $AF=FC =R$ } \\ \text{Let $FE = EG+GF $ } \)

The distance between the circumcenters of Triangle ABC and Triangle ADC \(= FE\)

 

angle:

\(\text{Let $\angle ABC = 60^{\circ} $ } \\ \text{Let $\angle ADC = \frac{\angle ABC}{2} = 30^{\circ} $ } \\ \text{Let $\angle AEC = 2*\angle ABC = 120^{\circ} $ } \\ \text{Let $\angle AFC = 2*\angle ADC = 60^{\circ} $ } \)

 

\(\mathbf{EG = \ ?}\)

\(\begin{array}{|rcll|} \hline AC^2 &=& 2r^2\Big(1-\cos(120^{\circ})\Big) \quad \text{$\cos$-rule} \quad | \quad \cos(120)^{\circ} = -0.5 \\ (4\sqrt{3})^2 &=& 2r^2(1+0.5) \\ 48 &=& 2r^2(1.5) \\ 24 &=& r^2(1.5) \\ r^2 &=& 16 \\\\ AG^2 + EG^2 &=& r^2 \\ (2\sqrt{3})^2 + EG^2 &=& 16 \\ 12 + EG^2 &=& 16 \\ EG^2 &=& 4 \\ \mathbf{EG} & \mathbf{=}& \mathbf{2} \\ \hline \end{array}\)

 

\(\mathbf{GF = \ ?}\)

\(\begin{array}{|rcll|} \hline AC^2 &=& 2R^2\Big(1-\cos(60^{\circ})\Big) \quad \text{$\cos$-rule} \quad | \quad \cos(60)^{\circ} = 0.5 \\ (4\sqrt{3})^2 &=& 2R^2(1-0.5) \\ 48 &=& 2R^2(0.5) \\ 24 &=& R^2(0.5) \\ R^2 &=& 48 \\\\ AG^2 + GF^2 &=& R^2 \\ (2\sqrt{3})^2 + GF^2 &=& 48 \\ 12 + GF^2 &=& 48 \\ GF^2 &=& 36 \\ \mathbf{GF} & \mathbf{=}& \mathbf{6} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline FE &=& EG+GF \\ &=& 2+6 \\ \mathbf{FE} & \mathbf{=} & \mathbf{8} \\ \hline \end{array}\)

 

The distance between the circumcenters of Triangle ABC and Triangle ADC is 8

 

laugh

Dec 11, 2018
 #3
avatar+26367 
+10

What is the residue modulo 13 of the sum of the modulo 13 inverses of the first 12 positive integers?
Express your answer as an integer from 0 to 12 , inclusive.

 

\(\begin{array}{|rcll|} \hline 1\cdot { \color{red}1} &\equiv& 1 \pmod{13} \\ 2\cdot 2^{-1} \equiv \pmod{13} \equiv 2\cdot { \color{red}2^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 3\cdot 3^{-1} \equiv \pmod{13} \equiv 3\cdot { \color{red}3^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 4\cdot 4^{-1} \equiv \pmod{13} \equiv 4\cdot { \color{red}4^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 5\cdot 5^{-1} \equiv \pmod{13} \equiv 5\cdot { \color{red}5^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 6\cdot 6^{-1} \equiv \pmod{13} \equiv 6\cdot { \color{red}6^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 7\cdot 7^{-1} \equiv \pmod{13} \equiv 7\cdot { \color{red}7^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 8\cdot 8^{-1} \equiv \pmod{13} \equiv 8\cdot { \color{red}8^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 9\cdot 9^{-1} \equiv \pmod{13} \equiv 9\cdot { \color{red}9^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 10\cdot 10^{-1} \equiv \pmod{13} \equiv 10\cdot { \color{red}10^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 11\cdot 11^{-1} \equiv \pmod{13} \equiv 11\cdot { \color{red}11^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ 12\cdot 12^{-1} \equiv \pmod{13} \equiv 12\cdot { \color{red}12^{11}} \pmod{13} &\equiv& 1 \pmod{13} \\ \hline \end{array}\)


\(\begin{array}{|ll|} \hline & \text{sum}_{\text{of the modulo 13 inverses of the first 12 positive integers}} \\ =& 1^{11}+2^{11}+3^{11}+4^{11}+5^{11}+6^{11}+7^{11}+8^{11}+9^{11}+10^{11}+11^{11}+12^{11} \pmod{13} \\ =& 1+7+9+10+8+11+2+5+3+4+6+12 \pmod{13} \\ =& 1+2+3+4+5+6+7+8+9+10+11+12 \pmod{13} \\ =& \dfrac{1+12}{2}\cdot 12 \pmod{13} \\ =& 13 \cdot 6 \pmod{13} \\ \mathbf{=}& \mathbf{0 \pmod{13}} \\ \hline \end{array}\)

laugh

.
Dec 10, 2018