heureka

avatar
Usernameheureka
Score26367
Membership
Stats
Questions 17
Answers 5678

 #2
avatar+26367 
+9

Kann mir jemand helfen , wie ich diesen Term durch Partialbruchzerlegung vereinfache?
Bitte mit Rechenweg
\(\displaystyle \dfrac{x^2+3x-4} { (x-4)*(x-2)^3 }\)

 

\(\small{ \begin{array}{|lrcll|} \hline & \dfrac{x^2+3x-4} { (x-4)(x-2)^3 } &=& \dfrac{A}{x-4} + \dfrac{B}{x-2}+ \dfrac{C}{(x-2)^2}+ \dfrac{D}{(x-2)^3} \quad | \quad \cdot (x-4)(x-2)^3 \\\\ & x^2+3x-4 &=& A(x-2)^3 + B(x-4)*(x-2)^2+ C(x-4)*(x-2) \\ &&& + D(x-4) \\\\ x=2 & 2^2+3\cdot 2-4 &=& A(2-2)^3 + B(2-4)*(2-2)^2+ C(2-4)*(2-2) \\ &&& + D(2-4) \\ & 6 &=& A\cdot 0 + B\cdot 0+ C\cdot 0 -2D \\ & 2D &=& -6 \\ & \mathbf{ D } & \mathbf{=} & \mathbf{-3} \\\\ x=4 & 4^2+3\cdot 4-4 &=& A(4-2)^3 + B(4-4)*(4-2)^2+ C(4-4)*(4-2) \\ &&& + D(4-4) \\ &24 &=& 8A+B\cdot 0 + C\cdot 0 +D\cdot 0 \\ & 8A &=& 24 \\ & \mathbf{ A } & \mathbf{=} & \mathbf{3} \\\\ x=1 & 1^2+3-4 &=& A(1-2)^3 + B(1-4)*(1-2)^2+ C(1-4)*(1-2) \\ &&& + D(1-4) \\ & 0 &=& -A-3B+3C-3D \quad | \quad A = 3, \quad D=-3\\ & 0 &=& -3-3B+3C-3(-3) \\ & 0 &=& -3-3B+3C+9 \quad | \quad : 3 \\ & 0 &=& -1-B+C+3 \\ & B &=& -1+C+3 \\ & \mathbf{ B } & \mathbf{=} & \mathbf{C+2} \\\\ x=-1 & (-1)^2+3\cdot(-1)-4 &=& A(-1-2)^3 + B(-1-4)*(-1-2)^2+ C(-1-4)*(-1-2) \\ &&& + D(-1-4) \\ & -6 &=& A(-3)^3 + B(-5)*(-3)^2+ C(-5)*(-3) + D(-5) \\ & -6 &=& -27A -45B+ 15C + -5D \quad | \quad A = 3, \quad D=-3\\ & -6 &=& -27\cdot 3 -45B+ 15C -5\cdot(-3) \\ & -6 &=& -27\cdot 3 -45B+ 15C+ 15 \quad | \quad B=C+2 \\ & -6 &=& -27\cdot 3 -45(C+2)+ 15C+ 15 \quad | \quad :3 \\ & -2 &=& -27-15(C+2)+ 5C+ 5 \\ & -2 &=& -27-15C-30+ 5C+ 5 \\ & -2 &=& -27-10C-30+ 5 \\ & 10C &=& 2 -27 -30+ 5 \\ & 10C &=& -50 \\ & \mathbf{ C } & \mathbf{=} & \mathbf{-5} \\\\ & B &=& C+2 \\ & B &=& -5+2 \\ & \mathbf{ C } & \mathbf{=} & \mathbf{-3} \\\\ & \mathbf{\dfrac{x^2+3x-4} { (x-4)*(x-2)^3 }} &\mathbf{=}& \mathbf{ \dfrac{3}{x-4} - \dfrac{3}{x-2}- \dfrac{5}{(x-2)^2}- \dfrac{3}{(x-2)^3} } \\ \hline \end{array} }\)

 

laugh

Nov 29, 2018
 #1
avatar+26367 
+9

The graph of the parametric equations
\(\begin{align*} x&=\cos t,\\ y&=\sin t, \end{align*}\)
meets the graph of the parametric equations
\(\begin{align*} x &= 2+ 4\cos s,\\ y &= 3+4\sin s, \end{align*}\)
at two points.
Find the slope of the line between these two points.

 

\( \text{circle 1:} \\ \begin{array}{|rcll|} \hline x &=& \cos(t) \\ y &=& \sin(t) \\ \hline x^2+y^2 &=& \cos^2(t) + \sin^2(t) \\ \mathbf{x^2+y^2} & \mathbf{=} & \mathbf{1} \\ \hline \end{array}\)

 

\(\text{circle 2:} \\ \begin{array}{|rcll|} \hline x &=& 2+4\cos(t) \quad \text{ or } \quad 4\cos(t) = x-2 \\ y &=& 3+4\sin(t) \quad \text{ or } \quad 4\sin(t) = y-3 \\ \hline x^2+y^2 &=& \Big( 2+4\cos(t) \Big)^2 + \Big( 3+4\sin(t) \Big)^2 \\ x^2+y^2 &=& 4+16\cos(t)+16\cos^2(t) + 9 + 24\sin(t) + 16\sin^2(t) \\ x^2+y^2 &=& 13+16\cos(t)+ 24\sin(t) + 16\Big(\cos^2(t) + \sin^2(t) \Big) \\ x^2+y^2 &=& 13+16\cos(t)+ 24\sin(t) + 16 \\ x^2+y^2 &=& 29+16\cos(t)+ 24\sin(t) \\ x^2+y^2 &=& 29+4\cdot4\cos(t)+ 6\cdot 4\sin(t) \\ x^2+y^2 &=& 29+4\cdot (x-2)+ 6\cdot (y-3) \\ x^2+y^2 &=& 29+4x-8+6y-18 \\ \mathbf{x^2+y^2} & \mathbf{=} & \mathbf{3+4x +6y} \\ \hline \end{array} \)

 

\(\text{intersection between the two circles:} \\ \begin{array}{|rcll|} \hline \text{circle 2: }~\mathbf{x^2+y^2} & \mathbf{=} & \mathbf{3+4x +6y} \quad &| \quad \text{circle 1: }~ \mathbf{x^2+y^2= 1} \\ 1 &=& 3+4x +6y \\ 6y+4x+3 &=& 1 \\ 6y &=& -4x-3 +1 \\ 6y &=& -4x-2 \\\\ y &=& \dfrac{-4x-2}{6} \\\\ y &=& -\dfrac{4}{6}x -\dfrac{2}{6} \\\\ y &=& -\dfrac{2}{3}x -\dfrac{1}{3} \\ \hline \end{array} \)

 

\(\text{the line between these two points:} \\ \begin{array}{|rcll|} \hline \mathbf{ y } & \mathbf{=} & \mathbf{ \underbrace{-\dfrac{2}{3}}_{\text{slope}}x -\dfrac{1}{3} } \\ \hline \end{array} \)

 

The slope of the line between these two points is \(\mathbf{-\dfrac{2}{3}}\).

 

 

laugh

Nov 28, 2018