+0  
 
0
71
2
avatar+809 

If \(f(x)=\dfrac{a}{x+2}\), solve for the value of \(a\) so that \(f(0)=f^{-1}(3a)\).

 Dec 4, 2018
 #1
avatar+94545 
+1

f(0)  =   a/2

 

Find the inverse.....get x by itself

 

y = a / (x + 2)

 

yx + 2y = a

 

yx  =  a - 2y     divide both sides by y

 

x = [ a - 2y] / y           "swap" x and y

 

y = [ a - 2x] / x     

 

f-1(x) = [ a - 2x ] / x           this is the inverse

 

f-1 (3a)  = [ a - 2(3a) ]/ (3a) =       - 5a / 3a   =   -5/3

 

And this equals f(0).....so

 

a/2 = -5/3     multiply both sides by 2

 

a =  -10/3

 

 

cool cool cool

 Dec 4, 2018
 #2
avatar+20838 
+7

 Inverse?

If \(\large{f(x)=\dfrac{a}{x+2}}\), solve for the value of \(\large{a}\) so that \(\large{f(0)=f^{-1}(3a)}\).

 

\(\begin{array}{|rcll|} \hline f\left(f^{-1}(x) \right) &=& x \quad & | \quad x = 3a \\\\ f\left(f^{-1}(3a) \right) &=& 3a \quad & | \quad f^{-1}(3a) = f(0) \\\\ f\left(f(0) \right) &=& 3a \quad & | \quad f(0) = \dfrac{a}{0+2} = \dfrac{a}{2} \\\\ f\left(\dfrac{a}{2} \right) &=& 3a \quad & | \quad f\left(\dfrac{a}{2}\right) = \dfrac{a}{\dfrac{a}{2}+2} \\\\ \dfrac{a}{\dfrac{a}{2}+2} &=& 3a \\\\ \dfrac{1}{\dfrac{a}{2}+2} &=& 3 \\\\ \dfrac{a}{2}+2 &=& \dfrac{1}{3} \\\\ \dfrac{a}{2} &=& \dfrac{1}{3}-2 \\\\ \dfrac{a}{2} &=& -\dfrac{5}{3} \\\\ \mathbf{a} & \mathbf{=} & \mathbf{-\dfrac{10}{3}} \\\\ \hline \end{array}\)

 

laugh

 Dec 4, 2018

8 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.