heureka

avatar
Usernameheureka
Score26375
Membership
Stats
Questions 17
Answers 5678

 #4
avatar+26375 
+2
Jun 22, 2019
 #2
avatar+26375 
+3

How many distinct ordered pairs of positive integers \((m,n)\) are there
so that the sum of the reciprocals of \(m\) and \(n\) is \(\dfrac14\)?

 

\(\text{From the relationship} \\ \dfrac{1}{z} = \dfrac{1}{m} + \dfrac{1}{n} \\ \text{follows immediately that $m>z$ and $n> z$ must be.}\\ \text{You can write $m=z+a$ and $n=z+b$ }\\ \text{Now the result:}\\ \dfrac{1}{z} = \dfrac{1}{z+a} + \dfrac{1}{z+b} \\ \)

 

\(\begin{array}{|rcll|} \hline \dfrac{1}{z} &=& \dfrac{1}{z+a} + \dfrac{1}{z+b} \\\\ \dfrac{1}{z} &=& \dfrac{2z+a+b}{z^2+za+zb+ab} \\\\ z^2+za+zb+ab &=& z(2z+a+b) \\ z^2+za+zb+ab &=& 2z^2+za+zb \\ z^2+za+zb+{\color{red}ab} &=& z^2+za+zb + {\color{red}z^2} \quad & \quad \text{by comparison follows } \boxed{z^2=ab} \\ \hline \end{array} \)

 

\(\text{Each pair $(a, b)=$ (divider, co-divider) of $n^2$ gives a solution }\\ \text{ from $\dfrac{1}{z} = \dfrac{1}{z+a} + \dfrac{1}{z+b} $.}\)

 

\(\text{if z = 4:}\\ \text{The divisors of $z^2=16$ are $1, 2, 4, 8, 16$ ($5$ divisors) }\)

 

\(\text{So there are $ \mathbf{5}$ distinct ordered pairs of positive integers $(m,n)$ }\)

 

\(\begin{array}{|c|c|c|c|c|} \hline 4^2 & divider & co-divider & \\ = 16 & a & b & ab & \dfrac{1}{4} = \dfrac{1}{4+a} + \dfrac{1}{4+b} \\ \hline & 1 & 16 & 1\cdot 16 = 16& \mathbf{\dfrac{1}{4} =} \dfrac{1}{4+1} + \dfrac{1}{4+16} = \mathbf{\dfrac{1}{5} + \dfrac{1}{20}} \\ \hline & 2 & 8 & 2\cdot 8 = 16& \mathbf{\dfrac{1}{4} =} \dfrac{1}{4+2} + \dfrac{1}{4+8}= \mathbf{\dfrac{1}{6} + \dfrac{1}{12}} \\ \hline & 4 & 4 & 4\cdot 4 = 16& \mathbf{\dfrac{1}{4} =} \dfrac{1}{4+4} + \dfrac{1}{4+4}= \mathbf{\dfrac{1}{8} + \dfrac{1}{8}} \\ \hline & 8 & 2 & 8\cdot 2 = 16& \mathbf{\dfrac{1}{4} =} \dfrac{1}{4+8} + \dfrac{1}{4+2}= \mathbf{\dfrac{1}{12} + \dfrac{1}{6}} \\ \hline & 16 & 1 & 16\cdot 1 = 16& \mathbf{\dfrac{1}{4} =} \dfrac{1}{4+16} + \dfrac{1}{4+1}= \mathbf{\dfrac{1}{20} + \dfrac{1}{5}} \\ \hline \end{array}\)

 

The distinct ordered pairs of positive integers \((m,n) = \sigma_0(z^2)\)

http://oeis.org/A000005

 

laugh

Jun 21, 2019
 #3
avatar+26375 
+2

For what value of  \(n\)  is  \(i + 2i^2 + 3i^3 + \cdots + ni^n = 48 + 49i\) ?

 

\(\begin{array}{|rcll|} \hline s &=& i + 2i^2 + 3i^3 + \cdots + ni^n \\ \hline \end{array}\)

 

\(\begin{array}{|rclll|} \hline s &=& i + 2i^2 + 3i^3 +4i^4+ \cdots + ni^n \\ is &=& \qquad i^2 +2i^3+3i^4+\ldots (n+1)i^n+ni^{n+1} \\ \hline s-is &=& \underbrace{ i+ i^2+i^3+i^4+\ldots +i^n}_{=S~ (GP)}-ni^{n+1}\\ s(1-i) &=& S-ni^{n+1}\\ &&\begin{array}{|rclll|} \hline S &=& i+ i^2+i^3+i^4+\ldots +i^n \\ iS &=& \qquad i^2+i^3+i^4+\ldots +i^n +i^{n+1} \\ \hline S - iS &=& i-i^{n+1} \\ S (1- i) &=& i( 1-i^{n}) \\ S &=& \dfrac{i( 1-i^{n})}{1-i} \\ \hline \end{array} \\\\ s(1-i) &=& \dfrac{i( 1-i^{n})}{1-i}-ni^{n+1} \\\\ s &=& \dfrac{i( 1-i^{n})}{(1-i)^2}-\dfrac{ni^{n+1}}{ 1-i } \\\\ s &=& \dfrac{i( 1-i^{n})}{(1-i)^2}-\left(\dfrac{ni^{n+1}}{ 1-i }\right)\cdot \left(\dfrac{1-i}{1-i}\right) \\\\ s &=& \dfrac{i( 1-i^{n}) -ni^{n+1}(1-i) }{(1-i)^2} \\\\ s &=& \dfrac{i( 1-i^{n}) -ni^{n}i(1-i) }{(1-i)^2} \\\\ s &=& \dfrac{i\Big( 1-i^{n} -ni^{n}(1-i)\Big) }{(1-i)^2} \quad | \quad (1-i)^2 = -2i \\\\ s &=& \dfrac{i\Big( 1-i^{n} -ni^{n}(1-i)\Big) }{-2i} \\\\ s &=& \dfrac{ 1-i^{n} -ni^{n}(1-i) }{-2 } \\\\ s &=& \dfrac{ -1+i^{n} +ni^{n}(1-i) }{2 } \\\\ s &=& \dfrac{ -1+i^{n} +ni^{n} -ni^{n+1} }{2 } \\\\ \mathbf{s} &=& \mathbf{\dfrac{ i^{n}(1+n) -i^{n+1}n -1 }{2 }} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{s} = \mathbf{\dfrac{ i^{n}(1+n) -i^{n+1}n -1 }{2 }} &=& 48 + 49i \\\\ i^{n}(1+n) -i^{n+1}n -1 &=& 96 + 98i \\\\ \mathbf{{\color{red}i^{n}}(1+n) -{\color{red}i^{n+1}}n } &=& \mathbf{97 + 98i} \\ \hline \end{array} \)

 

We compare the sides of the equation and note that i^n and i^(n+1) are adjacent values.

This means that one is either +i or -i and the other is either +1 or -1.

So there are two solutions for the comparison.

 

1. First possible solution

\(\begin{array}{|rcll|} \hline 98i &=&{ -\color{red}i^{n+1}}n \\ 97 &=& {\color{red}i^{n}}(1+n) \\ \hline \dfrac{98i}{97} &=& \dfrac{-i^{n+1} n}{i^{n} (1+n)} \\\\ \dfrac{98i}{97} &=& \dfrac{-i^{n}i\cdot n}{i^{n} (1+n)} \\\\ \dfrac{98i}{97} &=& \dfrac{- i\cdot n}{ (1+n)} \\\\ \dfrac{98}{97} &=& \dfrac{-n}{ (1+n)} \\\\ (1+n)98 &=& -97n \\ 98+98n &=& -97n \\ 195n &=& -98 \\ 195n &=& -98 \\ n &=& -\dfrac{98}{195} \\ n &=& -0.50256410256 \qquad \text{no solution, n is no integer } \\ \hline \end{array}\)

 

2. Second possible solution

\(\begin{array}{|rcll|} \hline 98i &=& {\color{red}i^{n}}(1+n) \\ 97 &=&{ -\color{red}i^{n+1}}n \\ \hline \dfrac{98i}{97} &=& \dfrac{i^{n} (1+n)}{-i^{n+1} n} \\\\ \dfrac{98i}{97} &=& \dfrac{i^{n} (1+n)}{-i^{n}i\cdot n} \\\\ \dfrac{98i^2}{97} &=& \dfrac{i^{n} (1+n)}{-i^{n} \cdot n} \\\\ \dfrac{-98}{97} &=& \dfrac{1+n}{-n} \\\\ \dfrac{98}{97} &=& \dfrac{1+n}{n} \\\\ 98n &=& 97(1+n) \\ 98n &=& 97 + 97n \\ \mathbf{n} &=& \mathbf{97} \\ \hline \end{array}\)

 

\(i + 2i^2 + 3i^3 + \cdots + 97i^{97} = 48 + 49i\)

 

laugh

Jun 20, 2019