We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
57
4
avatar

Evaluate $i^{11} + i^{16} + i^{21} + i^{26} + i^{31}$.

 

This is an AoPS question but I don’t know what to do. Can someone help me understand? Just wanted to make that clear.

 Jun 20, 2019
 #1
avatar+101856 
+2

Note 

i^2  = -1     

And -1 raised to an even power = 1

And -1 raised to an odd power  =  - 1

 

i^11 =  I^10 * i     =   (i^2)^5 * i      =  (-1)^5 * i   = (-1) * i  =  - i

 

i^16  = (i^2)^8   = (-1)^8  =  1

 

i^21  = i^20 * i   =  (i^2)^10 * i  =  (-1)^10 * i   = 1 * i   =   i

 

i^26  = (i^2)^13  =  (-1)^13  = - 1

 

i^31  =  i^30 * i  =  (i^2)^15 * i   = (-1)^15 * i  =  -1 * i  = - i

 

So....adding the 5  results we get

 

-i + 1+ i - 1 - i  =

 

 - i

 

EDIT MADE....THX Pushy!!

 

 

cool cool cool

 Jun 20, 2019
edited by CPhill  Jun 20, 2019
 #2
avatar+87 
+2

So 

i^1 = i,

i ^ 2 = -1,

i^3 = -i,

i^4= 1,

i ^ 5 = i,

and it keeps repeating between the four (i,-1,-i,i).

So, to find i^11, we find 11mod4 (or the remainder when dividing 11 and 4) to get 3. So, i ^11 is -i.

Then you do the rest.

i^16 = 1

i^21 = i

i^26 = -1

i^31 = -i.

So, all of those added together is -i + 1 + i - 1 - i which is -i.

 Jun 20, 2019
 #3
avatar+101856 
0

THX, Pushy....I left out one....edit made!!!!!

 

 

cool cool cool

CPhill  Jun 20, 2019
edited by CPhill  Jun 20, 2019
 #4
avatar+22546 
+2

Evaluate

\(i^{11} + i^{16} + i^{21} + i^{26} + i^{31}\)

 

Formula: \(i^{4n+a} = i^a\)

\(\begin{array}{|rcll|} \hline &&\mathbf{ i^{11} + i^{16} + i^{21} + i^{26} + i^{31} } \\ &=& i^{4\cdot 2+3} + i^{4\cdot 4+0} + i^{4\cdot 5+1} + i^{4\cdot 6+2} + i^{4\cdot 7+3} \\ &=& i^{3} + i^{0} + i^{1} + i^{2} + i^{3} \\ &=& i^{2}i + 1 + i + i^{2} + i^{2}i \quad | \quad i^2 = -1 \\ &=& -i + 1 + i -1 + -i \\ &=& \mathbf{ -i } \\ \hline \end{array}\)

 

 

laugh

 Jun 21, 2019

6 Online Users

avatar