Evaluate $i^{11} + i^{16} + i^{21} + i^{26} + i^{31}$.
This is an AoPS question but I don’t know what to do. Can someone help me understand? Just wanted to make that clear.
Note
i^2 = -1
And -1 raised to an even power = 1
And -1 raised to an odd power = - 1
i^11 = I^10 * i = (i^2)^5 * i = (-1)^5 * i = (-1) * i = - i
i^16 = (i^2)^8 = (-1)^8 = 1
i^21 = i^20 * i = (i^2)^10 * i = (-1)^10 * i = 1 * i = i
i^26 = (i^2)^13 = (-1)^13 = - 1
i^31 = i^30 * i = (i^2)^15 * i = (-1)^15 * i = -1 * i = - i
So....adding the 5 results we get
-i + 1+ i - 1 - i =
- i
EDIT MADE....THX Pushy!!
So
i^1 = i,
i ^ 2 = -1,
i^3 = -i,
i^4= 1,
i ^ 5 = i,
and it keeps repeating between the four (i,-1,-i,i).
So, to find i^11, we find 11mod4 (or the remainder when dividing 11 and 4) to get 3. So, i ^11 is -i.
Then you do the rest.
i^16 = 1
i^21 = i
i^26 = -1
i^31 = -i.
So, all of those added together is -i + 1 + i - 1 - i which is -i.
Evaluate
\(i^{11} + i^{16} + i^{21} + i^{26} + i^{31}\)
Formula: \(i^{4n+a} = i^a\)
\(\begin{array}{|rcll|} \hline &&\mathbf{ i^{11} + i^{16} + i^{21} + i^{26} + i^{31} } \\ &=& i^{4\cdot 2+3} + i^{4\cdot 4+0} + i^{4\cdot 5+1} + i^{4\cdot 6+2} + i^{4\cdot 7+3} \\ &=& i^{3} + i^{0} + i^{1} + i^{2} + i^{3} \\ &=& i^{2}i + 1 + i + i^{2} + i^{2}i \quad | \quad i^2 = -1 \\ &=& -i + 1 + i -1 + -i \\ &=& \mathbf{ -i } \\ \hline \end{array}\)