n=1;c=0;a = (n*1i^n);c=c+a;printc,n;n++; if(n<98, goto2, discard=0;
$i + 2i^2 + 3i^3 + \cdots + ni^n = 48 + 49i$?
n = 97 =48 + 49i
1 = 0 +1 i
2 = -2 +1 i
3 = -2 -2 i
4 = 2 -2 i
5 = 2 +3 i
6 = -4 +3 i
7 = -4 -4 i
8 = 4 -4 i
9 = 4 +5 i
10 = -6 +5 i
11 = -6 -6 i
12 = 6 -6 i
13 = 6 +7 i
14 = -8 +7 i
15 = -8 -8 i
16 = 8 -8 i
17 = 8 +9 i
18 = -10 +9 i
19 = -10 -10 i
20 = 10 -10 i
21 = 10 +11 i
22 = -12 +11 i
23 = -12 -12 i
24 = 12 -12 i
25 = 12 +13 i
26 = -14 +13 i
27 = -14 -14 i
28 = 14 -14 i
29 = 14 +15 i
30 = -16 +15 i
31 = -16 -16 i
32 = 16 -16 i
33 = 16 +17 i
34 = -18 +17 i
35 = -18 -18 i
36 = 18 -18 i
37 = 18 +19 i
38 = -20 +19 i
39 = -20 -20 i
40 = 20 -20 i
41 = 20 +21 i
42 = -22 +21 i
43 = -22 -22 i
44 = 22 -22 i
45 = 22 +23 i
46 = -24 +23 i
47 = -24 -24 i
48 = 24 -24 i
49 = 24 +25 i
50 = -26 +25 i
51 = -26 -26 i
52 = 26 -26 i
53 = 26 +27 i
54 = -28 +27 i
55 = -28 -28 i
56 = 28 -28 i
57 = 28 +29 i
58 = -30 +29 i
59 = -30 -30 i
60 = 30 -30 i
61 = 30 +31 i
62 = -32 +31 i
63 = -32 -32 i
64 = 32 -32 i
65 = 32 +33 i
66 = -34 +33 i
67 = -34 -34 i
68 = 34 -34 i
69 = 34 +35 i
70 = -36 +35 i
71 = -36 -36 i
72 = 36 -36 i
73 = 36 +37 i
74 = -38 +37 i
75 = -38 -38 i
76 = 38 -38 i
77 = 38 +39 i
78 = -40 +39 i
79 = -40 -40 i
80 = 40 -40 i
81 = 40 +41 i
82 = -42 +41 i
83 = -42 -42 i
84 = 42 -42 i
85 = 42 +43 i
86 = -44 +43 i
87 = -44 -44 i
88 = 44 -44 i
89 = 44 +45 i
90 = -46 +45 i
91 = -46 -46 i
92 = 46 -46 i
93 = 46 +47 i
94 = -48 +47 i
95 = -48 -48 i
96 = 48 -48 i
97 = 48 +49 i
\(i + 2i^2 + 3i^3 + \cdots + ni^n = 48 + 49i\)
Note that
i + 2i^2 + 3i^3 + 4i^4 =
(i + 3i^3) + (4i^4 + 2i^2) =
(i - 3i) + (4 - 2) =
[-2i + 2]
And every cycle of 4 terms in the summation will produce [ -2i + 2 ]
So
24 cycles of 4 wil produce 24 [ -2i + 2 ] = 48 - 48i (1)
And the term at the begining of the kth cycle is given by ( 4k - 3)i^(4k - 3)
So....the term at the start of the 25th cycle = (4 *25 - 3) i ^(4 * 25 - 3) = 97 i^(97) = 97i (2)
So.....the sum of (1) and (2) = 48 - 48i + 97i = 48 + 49i
So
(4*25 - 3) = n = 97
Just as the Guest found !!!!
For what value of \(n\) is \(i + 2i^2 + 3i^3 + \cdots + ni^n = 48 + 49i\) ?
\(\begin{array}{|rcll|} \hline s &=& i + 2i^2 + 3i^3 + \cdots + ni^n \\ \hline \end{array}\)
\(\begin{array}{|rclll|} \hline s &=& i + 2i^2 + 3i^3 +4i^4+ \cdots + ni^n \\ is &=& \qquad i^2 +2i^3+3i^4+\ldots (n+1)i^n+ni^{n+1} \\ \hline s-is &=& \underbrace{ i+ i^2+i^3+i^4+\ldots +i^n}_{=S~ (GP)}-ni^{n+1}\\ s(1-i) &=& S-ni^{n+1}\\ &&\begin{array}{|rclll|} \hline S &=& i+ i^2+i^3+i^4+\ldots +i^n \\ iS &=& \qquad i^2+i^3+i^4+\ldots +i^n +i^{n+1} \\ \hline S - iS &=& i-i^{n+1} \\ S (1- i) &=& i( 1-i^{n}) \\ S &=& \dfrac{i( 1-i^{n})}{1-i} \\ \hline \end{array} \\\\ s(1-i) &=& \dfrac{i( 1-i^{n})}{1-i}-ni^{n+1} \\\\ s &=& \dfrac{i( 1-i^{n})}{(1-i)^2}-\dfrac{ni^{n+1}}{ 1-i } \\\\ s &=& \dfrac{i( 1-i^{n})}{(1-i)^2}-\left(\dfrac{ni^{n+1}}{ 1-i }\right)\cdot \left(\dfrac{1-i}{1-i}\right) \\\\ s &=& \dfrac{i( 1-i^{n}) -ni^{n+1}(1-i) }{(1-i)^2} \\\\ s &=& \dfrac{i( 1-i^{n}) -ni^{n}i(1-i) }{(1-i)^2} \\\\ s &=& \dfrac{i\Big( 1-i^{n} -ni^{n}(1-i)\Big) }{(1-i)^2} \quad | \quad (1-i)^2 = -2i \\\\ s &=& \dfrac{i\Big( 1-i^{n} -ni^{n}(1-i)\Big) }{-2i} \\\\ s &=& \dfrac{ 1-i^{n} -ni^{n}(1-i) }{-2 } \\\\ s &=& \dfrac{ -1+i^{n} +ni^{n}(1-i) }{2 } \\\\ s &=& \dfrac{ -1+i^{n} +ni^{n} -ni^{n+1} }{2 } \\\\ \mathbf{s} &=& \mathbf{\dfrac{ i^{n}(1+n) -i^{n+1}n -1 }{2 }} \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline \mathbf{s} = \mathbf{\dfrac{ i^{n}(1+n) -i^{n+1}n -1 }{2 }} &=& 48 + 49i \\\\ i^{n}(1+n) -i^{n+1}n -1 &=& 96 + 98i \\\\ \mathbf{{\color{red}i^{n}}(1+n) -{\color{red}i^{n+1}}n } &=& \mathbf{97 + 98i} \\ \hline \end{array} \)
We compare the sides of the equation and note that i^n and i^(n+1) are adjacent values.
This means that one is either +i or -i and the other is either +1 or -1.
So there are two solutions for the comparison.
1. First possible solution
\(\begin{array}{|rcll|} \hline 98i &=&{ -\color{red}i^{n+1}}n \\ 97 &=& {\color{red}i^{n}}(1+n) \\ \hline \dfrac{98i}{97} &=& \dfrac{-i^{n+1} n}{i^{n} (1+n)} \\\\ \dfrac{98i}{97} &=& \dfrac{-i^{n}i\cdot n}{i^{n} (1+n)} \\\\ \dfrac{98i}{97} &=& \dfrac{- i\cdot n}{ (1+n)} \\\\ \dfrac{98}{97} &=& \dfrac{-n}{ (1+n)} \\\\ (1+n)98 &=& -97n \\ 98+98n &=& -97n \\ 195n &=& -98 \\ 195n &=& -98 \\ n &=& -\dfrac{98}{195} \\ n &=& -0.50256410256 \qquad \text{no solution, n is no integer } \\ \hline \end{array}\)
2. Second possible solution
\(\begin{array}{|rcll|} \hline 98i &=& {\color{red}i^{n}}(1+n) \\ 97 &=&{ -\color{red}i^{n+1}}n \\ \hline \dfrac{98i}{97} &=& \dfrac{i^{n} (1+n)}{-i^{n+1} n} \\\\ \dfrac{98i}{97} &=& \dfrac{i^{n} (1+n)}{-i^{n}i\cdot n} \\\\ \dfrac{98i^2}{97} &=& \dfrac{i^{n} (1+n)}{-i^{n} \cdot n} \\\\ \dfrac{-98}{97} &=& \dfrac{1+n}{-n} \\\\ \dfrac{98}{97} &=& \dfrac{1+n}{n} \\\\ 98n &=& 97(1+n) \\ 98n &=& 97 + 97n \\ \mathbf{n} &=& \mathbf{97} \\ \hline \end{array}\)
\(i + 2i^2 + 3i^3 + \cdots + 97i^{97} = 48 + 49i\)