Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1001
3
avatar+95 

For what value of n is i+2i2+3i3++nin=48+49i?

 Jun 19, 2019
 #1
avatar
+1

n=1;c=0;a = (n*1i^n);c=c+a;printc,n;n++; if(n<98, goto2, discard=0;

 

 i+2i2+3i3++nin=48+49i?

 

n = 97 =48 + 49i

 

1  =  0 +1 i
2  =  -2 +1 i
3  =  -2 -2 i
4  =  2 -2 i
5  =  2 +3 i
6  =  -4 +3 i
7  =  -4 -4 i
8  =  4 -4 i
9  =  4 +5 i
10  =  -6 +5 i
11  =  -6 -6 i
12  =  6 -6 i
13  =  6 +7 i
14  =  -8 +7 i
15  =  -8 -8 i
16  =  8 -8 i
17  =  8 +9 i
18  =  -10 +9 i
19  =  -10 -10 i
20  =  10 -10 i
21  =  10 +11 i
22  =  -12 +11 i
23  =  -12 -12 i
24  =  12 -12 i
25  =  12 +13 i
26  =  -14 +13 i
27  =  -14 -14 i
28  =  14 -14 i
29  =  14 +15 i
30  =  -16 +15 i
31  =  -16 -16 i
32  =  16 -16 i
33  =  16 +17 i
34  =  -18 +17 i
35  =  -18 -18 i
36  =  18 -18 i
37  =  18 +19 i
38  =  -20 +19 i
39  =  -20 -20 i
40  =  20 -20 i
41  =  20 +21 i
42  =  -22 +21 i
43  =  -22 -22 i
44  =  22 -22 i
45  =  22 +23 i
46  =  -24 +23 i
47  =  -24 -24 i
48  =  24 -24 i
49  =  24 +25 i
50  =  -26 +25 i
51  =  -26 -26 i
52  =  26 -26 i
53  =  26 +27 i
54  =  -28 +27 i
55  =  -28 -28 i
56  =  28 -28 i
57  =  28 +29 i
58  =  -30 +29 i
59  =  -30 -30 i
60  =  30 -30 i
61  =  30 +31 i
62  =  -32 +31 i
63  =  -32 -32 i
64  =  32 -32 i
65  =  32 +33 i
66  =  -34 +33 i
67  =  -34 -34 i
68  =  34 -34 i
69  =  34 +35 i
70  =  -36 +35 i
71  =  -36 -36 i
72  =  36 -36 i
73  =  36 +37 i
74  =  -38 +37 i
75  =  -38 -38 i
76  =  38 -38 i
77  =  38 +39 i
78  =  -40 +39 i
79  =  -40 -40 i
80  =  40 -40 i
81  =  40 +41 i
82  =  -42 +41 i
83  =  -42 -42 i
84  =  42 -42 i
85  =  42 +43 i
86  =  -44 +43 i
87  =  -44 -44 i
88  =  44 -44 i
89  =  44 +45 i
90  =  -46 +45 i
91  =  -46 -46 i
92  =  46 -46 i
93  =  46 +47 i
94  =  -48 +47 i
95  =  -48 -48 i
96  =  48 -48 i
97  =  48 +49 i

 Jun 19, 2019
edited by Guest  Jun 20, 2019
 #2
avatar+130477 
+2

i+2i2+3i3++nin=48+49i

 

Note that

 

i + 2i^2 + 3i^3 + 4i^4 =

 

(i + 3i^3) + (4i^4 + 2i^2)  =

 

(i - 3i) + (4 - 2)  =

 

[-2i  + 2]

 

And every  cycle of 4 terms in the summation  will produce   [ -2i + 2 ]

 

So

 

24 cycles of 4 wil produce    24 [ -2i + 2 ]  =   48 - 48i    (1)

 

And the term at the begining of the kth cycle is given by  ( 4k - 3)i^(4k - 3)

 

So....the term at the start of the 25th cycle =  (4 *25 - 3) i ^(4 * 25 - 3) =  97 i^(97)  = 97i      (2)

 

So.....the sum of  (1) and (2)   =   48 - 48i + 97i    =   48 + 49i

 

So 

 

(4*25 - 3)  =  n  =   97

 

Just as the Guest found   !!!!

 

 

cool cool cool

 Jun 20, 2019
edited by CPhill  Jun 20, 2019
edited by CPhill  Jun 20, 2019
edited by CPhill  Jun 20, 2019
 #3
avatar+26396 
+2

For what value of  n  is  i+2i2+3i3++nin=48+49i ?

 

s=i+2i2+3i3++nin

 

s=i+2i2+3i3+4i4++ninis=i2+2i3+3i4+(n+1)in+nin+1sis=i+i2+i3+i4++in=S (GP)nin+1s(1i)=Snin+1S=i+i2+i3+i4++iniS=i2+i3+i4++in+in+1SiS=iin+1S(1i)=i(1in)S=i(1in)1is(1i)=i(1in)1inin+1s=i(1in)(1i)2nin+11is=i(1in)(1i)2(nin+11i)(1i1i)s=i(1in)nin+1(1i)(1i)2s=i(1in)nini(1i)(1i)2s=i(1innin(1i))(1i)2|(1i)2=2is=i(1innin(1i))2is=1innin(1i)2s=1+in+nin(1i)2s=1+in+ninnin+12s=in(1+n)in+1n12

 

s=in(1+n)in+1n12=48+49iin(1+n)in+1n1=96+98iin(1+n)in+1n=97+98i

 

We compare the sides of the equation and note that i^n and i^(n+1) are adjacent values.

This means that one is either +i or -i and the other is either +1 or -1.

So there are two solutions for the comparison.

 

1. First possible solution

98i=in+1n97=in(1+n)98i97=in+1nin(1+n)98i97=ininin(1+n)98i97=in(1+n)9897=n(1+n)(1+n)98=97n98+98n=97n195n=98195n=98n=98195n=0.50256410256no solution, n is no integer 

 

2. Second possible solution

98i=in(1+n)97=in+1n98i97=in(1+n)in+1n98i97=in(1+n)inin98i297=in(1+n)inn9897=1+nn9897=1+nn98n=97(1+n)98n=97+97nn=97

 

i+2i2+3i3++97i97=48+49i

 

laugh

 Jun 20, 2019
edited by heureka  Jun 20, 2019

3 Online Users

avatar