$$\\16500=30000(1-r)^8\\\\
0.55=(1-r)^8\\\\
0.55^{1/8}=1-r\\\\
r=1-0.55^{1/8}$$
$${\mathtt{1}}{\mathtt{\,-\,}}{{\mathtt{0.55}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{8}}}}\right)} = {\mathtt{0.072\: \!005\: \!641\: \!200\: \!676\: \!8}}$$
$$r\approx 0.072\qquad $this is 7.2\%$$$
$$\\1000=16500(1-0.072)^n\\\\
0.060606060=0.928^n\\\\
log(0.060606060)=log(0.928^n)\\\\
log(0.060606060)=nlog(0.928)\\\\
n=\frac{log(0.060606060)}{log(0.928)}$$
$${\mathtt{n}} = {\frac{{log}_{10}\left({\mathtt{0.060\: \!606\: \!06}}\right)}{{log}_{10}\left({\mathtt{0.928}}\right)}} \Rightarrow {\mathtt{n}} = {\mathtt{37.516\: \!425\: \!994\: \!501\: \!126\: \!2}}$$
2015+37.5 = 2052
Mmm looks a bit suspect.
you better check it!