+0

# solve this

0
424
2

$${{\sqrt{{{\left({{\left({{log}_{10}\left({{\mathtt{10}}}^{\left({\mathtt{10}}\right)}\right)}^{\,{\mathtt{3}}}\right)}}^{{\mathtt{3}}}\right)}}^{{\mathtt{3}}}}}}^{\,{\mathtt{2}}}$$

solve this question

Guest May 26, 2015

#3
+93650
+5

Mmm

the sqrt and the square cancel each other out so the problem becomes

$$\{[(log_{10}(10^{10})^3]^3\}^3\\\\ =\{[(log_{10}(10^{30})]^3\}^3\\\\ =\{[30(log_{10}(10)]^3\}^3\\\\ =\{[30(1)]^3\}^3\\\\ =[30]^9\\\\ =3^9*10^9\\\\ =19683*10^9\\\\\ =1.9683*10^{13}$$

There you go, multiple choice answers - take your pick

Melody  May 27, 2015
#2
+89876
+5

log (10^(10))^3 =  (10 log 10)^3 = (10)^3  = 1000

1000^3 = (10^3)^3   = 10^9

(10^9)^3  = 10^27

([(10)^27]^2)^ (1/2)   =

10^27

CPhill  May 27, 2015
#3
+93650
+5

Mmm

the sqrt and the square cancel each other out so the problem becomes

$$\{[(log_{10}(10^{10})^3]^3\}^3\\\\ =\{[(log_{10}(10^{30})]^3\}^3\\\\ =\{[30(log_{10}(10)]^3\}^3\\\\ =\{[30(1)]^3\}^3\\\\ =[30]^9\\\\ =3^9*10^9\\\\ =19683*10^9\\\\\ =1.9683*10^{13}$$

There you go, multiple choice answers - take your pick

Melody  May 27, 2015