Now it is right
I had just made a careless error right at the beginning.
Thanks for spotting it Alan [ I do have a question at the bottom though]
the correct answer is

I have not found my errors :(
---------------------------------------------------------------------------------
$$\\\int\frac{(2cos3x + 3sinx) }{sin^3x }dx\\\\
=\int\frac{2(cos2xcosx-sin2xsinx) + 3sinx }{sin^3x }dx\\\\
=\int\frac{2cos2xcosx - 2sin2xsinx) + 3sinx }{sin^3x }dx\\\\
=\int\frac{2(cos^2x-sin^2x)cosx - 2(2sinxcosx)sinx) + 3sinx }{sin^3x }dx\\\\
=\int\frac{2cosxcos^2x-2cosxsin^2x - 4sin^2xcosx + 3sinx }{sin^3x }dx\\\\
=\int\frac{2cos^3x-2cosxsin^2x - 4sin^2xcosx + 3sinx }{sin^3x }dx\\\\
=\int\frac{2cos^3x - 6sin^2xcosx + 3sinx }{sin^3x }dx\\\\
=\int\;2cot^3x-\frac{6cosx}{sinx} + 3csc^2x \;dx\\\\
=\int\;2cot^3x\;dx -\int\;\frac{6cosx}{sinx}\;dx +\int\; 3csc^2x \;dx\\\\
=\int\;2cot^3x\;dx -6ln(sinx) +\int\; 3csc^2x \;dx\\\\
=-6ln(sinx)\;+\;\int\;2cot^3x\;dx -3cotx\\\\
=-6ln(sinx)\;-3cotx\;+\;\int\;2cot^3x\;dx$$
$$\\$NOW I'll use the reduction formula$\\\\
\int\;2cot^3x\;dx\\\\
=2[\frac{-Cot^{3-1}x}{3-1}-\int\;cot^{-2+3}x\;dx]\\\\
=2[\frac{-Cot^{2}x}{2}-\int\;cotx\;dx]\\\\
=-Cot^{2}x-2\;ln(sinx)\\\\$$
$$\\$So - continuing from before$\\\\
=-6ln(sinx)\;-3cotx\;+\;\int\;2cot^3x\;dx \\\\
=-6ln(sinx)\;-3cotx\;+\; -Cot^{2}x-2\;ln(sinx) +c \\\\
=-8ln(sinx)\;-3Cotx-Cot^{2}x \;+c \\\\$$
-------------------------------------------------------------
Now this is correct but Wolfram Alpha is telling me that $$cot^2x=csc^2x$$ for the restricted values involed here.
WHY IS THAT ?