Melody

avatar
UsernameMelody
Score118723
Membership
Stats
Questions 900
Answers 33647

-4
846
3
avatar+118723 
Melody  Feb 11, 2022
 #1
avatar+118723 
0

Hi Einstein Jr.

Here is how it is done    

 

The number of ways to choose 10 b***s from 90,  6 are drawn

So there are 84 Lose numbers and 6 Win numbers

It is easier if the winning numbers numbers are drawn first and and kept secret.

Then the player has to draw 10 ball numbers to match the winning ones (hopefully).

There are 90 numbers that can be drawn from so there are 90C10 possible draws

 

a) How many ways can just one be correct?

you want 9 fails and 1 success = 86C9*6C1

P(1 success)=84C9*6C1/90C10

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{9}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{9}}){!}}}\right)}{\mathtt{\,\times\,}}{\mathtt{6}}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.386\: \!113\: \!895\: \!203\: \!522\: \!6}}$$

 

b) P(2 successes)

84C8*6C2/90C10

 

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{8}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{8}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{2}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{2}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.114\: \!310\: \!034\: \!764\: \!200\: \!8}}$$

 

c) P(3 successes)

84C7*6C3/90C10

 

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{7}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{7}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.015\: \!835\: \!156\: \!330\: \!971\: \!5}}$$

 

c) P(3 successes)

84C7*6C3/90C10

 

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{7}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{7}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.015\: \!835\: \!156\: \!330\: \!971\: \!5}}$$

 

d) P(4 successes)

84C6*6C4/90C10

 

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{4}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{4}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.001\: \!065\: \!827\: \!829\: \!969\: \!2}}$$

 

e) P(5 successes)

84C5*6C5/90C10

 

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.000\: \!032\: \!379\: \!579\: \!644\: \!6}}$$

 

 

f) P(6 successes)

84C4*6C6/90C10

 

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{4}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{4}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.000\: \!000\: \!337\: \!287\: \!288}}$$

 

NOW for good measure

P(no successes)

84C10/90C10

 

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.482\: \!642\: \!369\: \!004\: \!403\: \!3}}$$

 

Check

P(of any number of wins)

nCr(84,9)*6/nCr(90,10)+

nCr(84,8)*nCr(6,2)/nCr(90,10)+

nCr(84,7)*nCr(6,3)/nCr(90,10)+

nCr(84,6)*nCr(6,4)/nCr(90,10)+

nCr(84,5)*nCr(6,5)/nCr(90,10)+

nCr(84,4)*nCr(6,6)/nCr(90,10)+

nCr(84,10)/nCr(90,10)

 

$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{9}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{9}}){!}}}\right)}{\mathtt{\,\times\,}}{\mathtt{6}}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{8}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{8}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{2}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{2}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{7}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{7}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{4}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{4}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{4}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{4}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{1}}$$

.
Jun 30, 2015