Hi Einstein Jr.
Here is how it is done 
The number of ways to choose 10 b***s from 90, 6 are drawn
So there are 84 Lose numbers and 6 Win numbers
It is easier if the winning numbers numbers are drawn first and and kept secret.
Then the player has to draw 10 ball numbers to match the winning ones (hopefully).
There are 90 numbers that can be drawn from so there are 90C10 possible draws
a) How many ways can just one be correct?
you want 9 fails and 1 success = 86C9*6C1
P(1 success)=84C9*6C1/90C10
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{9}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{9}}){!}}}\right)}{\mathtt{\,\times\,}}{\mathtt{6}}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.386\: \!113\: \!895\: \!203\: \!522\: \!6}}$$
b) P(2 successes)
84C8*6C2/90C10
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{8}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{8}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{2}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{2}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.114\: \!310\: \!034\: \!764\: \!200\: \!8}}$$
c) P(3 successes)
84C7*6C3/90C10
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{7}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{7}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.015\: \!835\: \!156\: \!330\: \!971\: \!5}}$$
c) P(3 successes)
84C7*6C3/90C10
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{7}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{7}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.015\: \!835\: \!156\: \!330\: \!971\: \!5}}$$
d) P(4 successes)
84C6*6C4/90C10
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{4}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{4}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.001\: \!065\: \!827\: \!829\: \!969\: \!2}}$$
e) P(5 successes)
84C5*6C5/90C10
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.000\: \!032\: \!379\: \!579\: \!644\: \!6}}$$
f) P(6 successes)
84C4*6C6/90C10
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{4}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{4}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.000\: \!000\: \!337\: \!287\: \!288}}$$
NOW for good measure
P(no successes)
84C10/90C10
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{0.482\: \!642\: \!369\: \!004\: \!403\: \!3}}$$
Check
P(of any number of wins)
nCr(84,9)*6/nCr(90,10)+
nCr(84,8)*nCr(6,2)/nCr(90,10)+
nCr(84,7)*nCr(6,3)/nCr(90,10)+
nCr(84,6)*nCr(6,4)/nCr(90,10)+
nCr(84,5)*nCr(6,5)/nCr(90,10)+
nCr(84,4)*nCr(6,6)/nCr(90,10)+
nCr(84,10)/nCr(90,10)
$${\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{9}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{9}}){!}}}\right)}{\mathtt{\,\times\,}}{\mathtt{6}}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{8}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{8}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{2}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{2}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{7}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{7}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{4}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{4}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{4}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{4}}){!}}}\right)}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{6}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\left({\frac{{\mathtt{84}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{84}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}{{\left({\frac{{\mathtt{90}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)}}} = {\mathtt{1}}$$
.