Thanks Chris, I also would like to try this one.
We have this situation
Let X be the number of scoops in and Y be the number of scoops out, so X and Y are integers
$$46899X-13567Y=1$$ This is a diophantine equation because the solutions must be integers.
I'll rearrange this
$$\\46899X=13576Y+1\\\\
\frac{46899}{13576}*X=Y+\frac{1}{13576}\\\\
$I need the fraction part to be a proper fraction$
\frac{(3*13576+6171)}{13576}*X=Y+\frac{1}{13576}\\\\
3X+\frac{6171}{13576}*X=Y+\frac{1}{13576}\\\\
\frac{6171}{13576}*X=Y-3X+\frac{1}{13576}\\\\$$
Y-3X is an integer so I am going to replace it with Z (I only care that it is an integer)
$$\\\frac{6171}{13576}*X=Z+\frac{1}{13576}\\\\
So\\
6171*X = 1 Mod\; 13576\\\\
X = \frac{1}{6171}\; Mod\; 13576\\\\
X = 6171^{-1}\;\; Mod\; 13576\\\\\\
$Now I am going to use the $ \underline{Euclidean\; Algorithm} \\\\
\begin{array}{rllll}
13576&=&\underline{6171}*2+\underline{1234}\qquad&(1a)\quad &1234=13576-6171*2\\\\
6171&=&\underline{1234}*5+\underline{1}\qquad&(2a)\quad &1=6171-1234*5\\\\
\end{array}
$I can stop the Euclidean algorithm now because I have the 1 that I wanted$\\\\
$Now I am going to use the \underline{Extended Euclidean Algorithm} and go 'backwards' :)$\\\\$$
$$\\\frac{6171}{13567}*X=Z+\frac{1}{13567}\\\\
So\\
6171*X = 1 Mod\; 13567\\\\
X = \frac{1}{6171}\; Mod\; 13567\\\\
X = 6171^{-1}\;\; Mod\; 13567\\\\\\
$Now I am going to use the Euclidean Algorithm$ \\\\
\begin{array}{rllll}
13576&=&\underline{6171}*2+\underline{1234}\qquad&(1a)\quad &1234=13576-6171*2\\\\
6171&=&\underline{1234}*5+\underline{1}\qquad&(2a)\quad &1=6171-1234*5\\\\
\end{array}
$I can stop the Euclidean algorithm now because I have the 1 that I wanted$\\\\
$Now I am going to use the extended Euclidean Algorithm and go 'backwards' :)$\\\\
\begin{array}{rllll}
1&=&6171-1234*5\qquad &(2b)\\\\
1&=&6171-(13576-6171*2)*5\qquad &(2a)\\\\
1&=&6171-5*13576+5*6171*2\qquad &(2a)\\\\
1&=&6171-5*13576+10*6171\qquad &(2a)\\\\
1&=&11*6171-5*13576\qquad &(2a)\\\\
&&$now 5*13576 mod 13576=0 so$\\\\
1&=&11*6171\\\\
\end{array}$$
So X=11
The number of scoops in is 11+13576N
But each scoop in is 46899 peices.
46899*(11+13576N)<600000
(11+13576N)<12.79
N has to be 0
SO
The number of scoops in MUST be 11.
Here are 3 lollipops, one for me, one for CPhill and one for Mellie.
BECAUSE WE DESERVE THEM
I just realized that some otf the LaTex was not displaying.
Hopefully there is no more problems.
Ref: (only partly) https://www.youtube.com/watch?v=fz1vxq5ts5I