Melody

avatar
UsernameMelody
Score118723
Membership
Stats
Questions 900
Answers 33647

-4
846
3
avatar+118723 
Melody  Feb 11, 2022
 #3
avatar+118723 
+10

$${\frac{\left({\frac{{\mathtt{x}}}{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{y}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{y}}}{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{y}}\right)}}\right){\mathtt{\,\times\,}}\left({\frac{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}{\left({{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,-\,}}{{\mathtt{y}}}^{{\mathtt{4}}}\right)}}\right)}{\left({\frac{{\mathtt{x}}}{\left(\left({{\mathtt{x}}}^{{\mathtt{2}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{y}}{\mathtt{\,\small\textbf+\,}}\left({{\mathtt{y}}}^{{\mathtt{2}}}\right)\right)}}\right)}}$$

 

$$\\\left(\left(\frac{x}{(x+y)}+\frac{y}{(x-y)}\right)*\left(\frac{(x^2-xy)}{(x^4-y^4)}\right)\right)\div\left(\frac{x}{(x^2)+2xy+(y^2)}\right)\\\\
=\left(\left(\frac{x(x-y)}{(x+y)(x-y)}+\frac{y(x+y)}{(x-y)(x+y)}\right)*\left(\frac{x(x-y)}{(x^2)^2-(y^2)^2}\right)\right)\times\left(\frac{(x^2)+2xy+(y^2)}{x}\right)\\\\
=\left(\left(\frac{x^2-xy+xy+y^2}{(x+y)(x-y)}\right)*\left(\frac{x(x-y)}{(x^2)^2-(y^2)^2}\right)\right)\times\left(\frac{(x+y)^2}{x}\right)\\\\
=\left(\left(\frac{x^2+y^2}{(x+y)}\right)*\left(\frac{x}{(x^2-y^2)(x^2+y^2)}\right)\right)\times\left(\frac{(x+y)^2}{x}\right)\\\\
=\frac{x^2+y^2}{1}\times\frac{1}{(x^2-y^2)(x^2+y^2)}\times\frac{x+y}{1}\\\\
=\frac{1}{1}\times\frac{1}{(x^2-y^2)}\times\frac{x+y}{1}\\\\
=\frac{1}{(x-y)(x+y)}\times\frac{x+y}{1}\\\\
=\frac{1}{x-y}\\\\$$

.
Jul 29, 2015
 #3
avatar+118723 
+5
Jul 29, 2015