2.
(1/(x-2) - 2/(x+1) + 3/x) * (((x^2)+x)/(x^2+x-3)))
$$\left({\frac{{\mathtt{1}}}{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}}\right)}}{\mathtt{\,-\,}}{\frac{{\mathtt{2}}}{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{3}}}{{\mathtt{x}}}}\right){\mathtt{\,\times\,}}\left({\frac{\left(\left({{\mathtt{x}}}^{{\mathtt{2}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{x}}\right)}{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}}\right)$$
$$\\\left(\frac{1}{(x-2)} -\frac{ 2}{(x+1)} + \frac{3}{x}\right) \times \frac{x(x+1)}{x^2+x-3}\\\\
=\left(\frac{x(x+1)}{x(x+1)(x-2)} -\frac{ 2x(x-2)}{x(x-2)(x+1)} + \frac{3(x+1)(x-2)}{x(x+1)(x-2)}\right) \times \frac{x(x+1)}{x^2+x-3}\\\\
=\frac{x(x+1)-2x(x-2)+3(x+1)(x-2)}{x(x+1)(x-2)} \times \frac{x(x+1)}{x^2+x-3}\\\\
=\frac{x^2+x-2x^2+4x+3(x^2-x-2)}{(x-2)} \times \frac{1}{x^2+x-3}\\\\
=\frac{x^2+x-2x^2+4x+3x^2-3x-6}{(x-2)} \times \frac{1}{x^2+x-3}\\\\
=\frac{2x^2+2x-6}{(x-2)} \times \frac{1}{x^2+x-3}\\\\
=\frac{2(x^2+x-3)}{(x-2)} \times \frac{1}{x^2+x-3}\\\\
=\frac{2}{x-2} \\\\$$
Again, you need to check my working although this one looks more promising than the first one that I did :)