I'm guessing here but
the lioght will spread out in a sphere
the surface area of a sphere is 4*pi*r^2
r=5.2*10^18
So the surface are of THIS sphere is
$$\\SA=4*\pi*(5.2*10^{18})^2\\
SA=4*\pi*5.2^2*10^{36}\\$$
$${\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{5.2}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{\pi}} = {\mathtt{339.794\: \!661\: \!412\: \!272\: \!036\: \!7}}$$
$$\\SA= 3.39797946614122720367 * 10^{38}\;\; M^2\\\\
Brightness \approx 8.9*10^{29}/(3.39797946614122720367 * 10^{38}) \;\;$watts per square metre$\\\\
Brightness \approx 8.9*10^{-9}/(3.39797946614122720367 ) \;\;$watts per square metre$\\\\
Brightness \approx 2.62*10^{-9} \;\;$watts per square metre$\\\\$$
I got the same as anon so maybe we are both correct 