Melody

avatar
UsernameMelody
Score118723
Membership
Stats
Questions 900
Answers 33647

-4
846
3
avatar+118723 
Melody  Feb 11, 2022
 #3
avatar+118723 
+5
Nov 5, 2015
 #1
avatar+118723 
+10

 

\((x^2-5x+2)^2-(x^2-5x)=8\\ (x^2-5x+2)(x^2-5x+2)-x^2+5x-8=0\\ x^4-5x^3+2x^2-5x^3+25x^2-10x+2x^2-10x+4-x^2+5x-8=0\\ ...\\ x^4-10x^3+28x^2-15x-4=0\\ \)

 

Now I am going to look for factors.  I am using the remainder theorem.  

If I sub in x=1,  which was just the first number that I tried.  I get

1 - 10 +28 - 15 - 4 and that DOES =0  so that means that one of the factors is   (x-1)

 

so now I am going to do an algebraic division to see what (x-1) would be multiplied by

 

            x^3 - 9x^2 + 19x + 4

        ---------------------------------------------

x-1  |   x^4 - 10x^3 + 28x^2 - 15x - 4

           x^4  - x^3

           --------------------------

                   - 9x^3+28x^2

                    - 9x^3 +9x^2

                      ------------------------

                               19x^2  - 15x

                               19x^2  - 19x

                               ---------------------

                                             4x - 4

                                             4x - 4

                                            --------

                                                   0

                                             -------

 

So we have

 

\((x-1)(x^3-9x^2+19x+4)=0\)

 

I tested  +1,-1,+2,-2,+4,-4     I chose these because they are all factors of 4

x=4   made that second bracket = 0  therefore another factor is (x-4)

 

I did another algebraic division the same as before and found that 

 

\((x^3-9x^2+19x+4)\div (x-4)=x^2-5x-1\\ so\\ (x-1)(x-4)(x^2-5x-1)=0\\ so\\ x-1=0\qquad or \qquad x-4=0 \qquad or\qquad x^2-5x-1=0\\ x=1\qquad or \qquad x=4 \qquad or\qquad x=\frac{5\pm\sqrt{25-\;-4}}{2*1}\\ x=1\qquad or \qquad x=4 \qquad or\qquad x=\frac{5\pm\sqrt{29}}{2}\\ x=1\quad or \quad x=4 \quad or\quad x=\frac{5+\sqrt{29}}{2}\quad or \quad x=\frac{5-\sqrt{29}}{2} \)

 

\(x=1 \quad or \quad x=4 \quad or \quad x\approx5.193 \quad or \quad x\approx -0.193\)

 

NOW I have not checked thes BUT if you substitute them back into the initial equation they should all make the equation true.

 

Let's have  a look at the  graph    y=(x^2-5x+2)^2-(x^2-5x)-8    and see where y = 0

 

https://www.desmos.com/calculator/lhcjfgppxk

 

There you go, that is how it is done.  If you would like to ask  questions go ahead and ask.  :))

Nov 4, 2015