I remember this
\(log_{10}100=2\qquad because \qquad 10^2=100\)
A log is a power
so
\(if \;\;x=log_3 18\;\;then \;\;18=3^x \)
I will use change of base log law to solve this
\(log_y x = \frac{log_a x}{log_a y}\)
\(log_318=\frac{log_{10}18}{log_{10}3}\approx 2.6309\)
So it will only 'equal' 3 if it is rounded to the nearest whole number.