(1-1/t^2)/(1/t-t) = -1/t get common denominators on top and bottom
( [t^2 - 1] / t^2 ) / ( [ 1 - t^2] / t ) = factor a -1 out of the numerator on the right
( - [ 1 - t^2] / t^2 ) / ( [ 1 - t^2] / t ) =
( - [ 1 - t^2] / t^2 ) * ( t / [ 1 - t^2] ) =
( - [ 1 - t^2] / [ 1 - t^2] ) * ( t / t^2 ) =
- t / t^2 =
-1 / t
= ( t^2 -1)/t^2 / (1-t^2)/t
= (t^2-1)/t^2 x t/(1-t^2) = (t^2 -1)/t x 1/(1-t^2) Multiply by -1/-1
(1-t^2)/(-t) x 1/(1-t^2) = - 1/t
(1-1/t^2)/(1/t-t) = -1/t get common denominators on top and bottom
( [t^2 - 1] / t^2 ) / ( [ 1 - t^2] / t ) = factor a -1 out of the numerator on the right
( - [ 1 - t^2] / t^2 ) / ( [ 1 - t^2] / t ) =
( - [ 1 - t^2] / t^2 ) * ( t / [ 1 - t^2] ) =
( - [ 1 - t^2] / [ 1 - t^2] ) * ( t / t^2 ) =
- t / t^2 =
-1 / t