+0  
 
0
1836
10
avatar+36 

Hey, CPhill (or whoever reading this), remember that 1-100 with only 2,0,2,1 question I posted? Well, I have gotten some progress on it...

1 =  2 + 0 - 2 + 1

2  = (2 + 0) / 2  + 1

3  =  2^2 - 1 - 0

4  =  2^2  - 0/1

5 =  2 + 0 + 2 + 1

6 =  (2 + 1)2  + 0

7  =  10/2 + 2

8  =  (2 + 1)! + 2   - 0

9 =  (2 + 1)^2  + 0/2

10  = (20/2)  / 1

11  = 20 / 2 + 1

12  =  12  + 0/2

13  =   12 + (0/2)!

14  =  12 + 2 + 0

15  =  C(10,2) / ( 2! + 0! )

16  =   2^ ( 0! + 1!  + 2!)

17 = 20 - 2 -1 

18  =  20  - (2/1)!

19  = 20 - 2! + 1!

20 =   20 / (2 -1)

21  =  20 + 2  - 1

22  =  20 + 2/1

23  = 20 + 2 + 1

24  = ( 12) ( 2 + 0)

25 =   122  + 0!

26  =  20 + (1 + 2)!

27 = (2 ! + 0! ) ^( 2 + 1)

28 = C(10-2, 2)

29 = [(2+0!)! / .2] -1

30 = (2 + 0!)! * (1/.2)

31 = 2^(1/.2) - 0!

32 = 10  + 22

33 = 2^(1/.2) + 0!

34 = (2^2)! + 10

35 = [ (2 + 1) 1] ^2  - 0!

36 = [ (2 + 1)!  ] ^2  - 0

37 = 2! + 0!)! ^( 2)  +  1

38 = (20-1) * 2

39 =  20*2 - 1

40 = 10 (2 + 2)

41 =  20 * 2 + 1

42 = 21*2  - 0

43 = 21 *2  + 0!

44 = 22(1 + 0!)

45 = p(10, 2)/2

46 = 10.2(bar)/0.2(bar)

47 = C(10,2) + 2

48 = (10/.2)  -  2

49 =((2+1)! + 0!)^2

50 = 10^2/2

51 = 102/2

52 = (10/.2) + 2

53 = ( 12/.2 bar) - 0!

54 = ( 12/.2 bar) + 0

55 = (12 - 0!)/.2

56 = P(10-2,2)

57 = 

58 =[ ( 2 + 0! )! / .1] -  2 

59 = 12/.2  - 0!

60 = 20 ( 2 + 1)

61 = 12/.2  + 0!

62 = [( 2 + 0! )!/ .1] + 2

63 = 2^( [ 2 + 1]!)  - 0!

64 = 2^([2 + 1)! ] + 0

65 = C(12,2) - 0!

66 = C(12,2) - 0 

67 = C(12,2)  + 0!

68 = 

69 = 

70 = 

71 = 

72 =  (12)  ( 2 + 0!)!

73 = 

74 = 

75 = 

76 =

77 =

78 = C(12+0!, 2)

79 = [( 0! / .1 bar ) ^2] -2

80 = [2^( 2 + 0!)] / .1

81 =[( 2^0/.1 bar)^2]

82 =

83 = [ (0!/.1 bar)^2] +2

84 =

85 =

86 =

87 =

88 = P(10,2) - 2

89 = (20/.2 bar) - 1

90 = C(10,2) * 2

91 = ( 20/.2 bar) + 1

92 = P (10,2) +2

93 =

94 =

95 = (20 -1)/.2

96 =

97 =

98 = 10^2  - 2

99 = 20/.2 - 1

100 = 102  - 2

 

Could you possibly fill in ANY of the empty spots, please? Thank you so much!

 Dec 31, 2020
edited by Guest  Dec 31, 2020
edited by Guest  Dec 31, 2020
edited by Guest  Dec 31, 2020
 #1
avatar+539 
+1

I remember doing one of these in 4th grade but with 4,4,4 and 4 instead of 2,0,2 and 1.

 Dec 31, 2020
 #2
avatar
0

Oh, that's cool :). Earlier this school year, we did this exact same assignment with 1234 which was much, MUCH easier than this..

Guest Dec 31, 2020
 #3
avatar+129852 
+1

Very difficult to fill in many of the  70s  or 80s  (at least that's what I found)

 

floor (sqrt (2)  /.2  )  *  10    =  70

 

 That's about all I've got right now......maybe I'll think of some more.....!!!!

 

cool cool cool

 Dec 31, 2020
 #4
avatar+421 
+1

CPhill, what about $71 = \lceil {\frac{\sqrt{2}}{.2} * 10}\rceil$?

 Dec 31, 2020
edited by Pangolin14  Dec 31, 2020
edited by Pangolin14  Dec 31, 2020
 #6
avatar+129852 
0

Yep.....I missed that one....good job, Pangolin.....!!!!

 

 

cool cool cool

CPhill  Dec 31, 2020
 #5
avatar+36 
+1

my math teacher said about 90 are possible this year with his rules, he himself getting only about 85. I've got around 81, I think..

 Dec 31, 2020
 #7
avatar+129852 
+1

Unless I mis-counted....I think you  now have 83....you gave your math teacher a run for his money.....!!!

 

 

cool cool cool

CPhill  Dec 31, 2020
 #8
avatar+129852 
+2

floor [(sqrt (21))^(2 + 0!)]   =  floor [ (21)^(3/2)]    = 96

 

ceiling  [ (sqrt (21))^(2 + 0!)  = 97

 

Now you have as many as your teacher.....LOL!!!!

 

 

cool cool cool

CPhill  Dec 31, 2020
 #9
avatar+36 
+1

Thanks, everyone!!

 Dec 31, 2020
 #10
avatar+421 
+1

1 =  2 + 0 - 2 + 1

2  = (2 + 0) / 2  + 1

3  =  2^2 - 1 - 0

4  =  2^2  - 0/1

5 =  2 + 0 + 2 + 1

6 =  (2 + 1)2  + 0

7  =  10/2 + 2

8  =  (2 + 1)! + 2   - 0

9 =  (2 + 1)^2  + 0/2

10  = (20/2)  / 1

11  = 20 / 2 + 1

12  =  12  + 0/2

13  =   12 + (0/2)!

14  =  12 + 2 + 0

15  =  C(10,2) / ( 2! + 0! )

16  =   2^ ( 0! + 1!  + 2!)

17 = 20 - 2 -1 

18  =  20  - (2/1)!

19  = 20 - 2! + 1!

20 =   20 / (2 -1)

21  =  20 + 2  - 1

22  =  20 + 2/1

23  = 20 + 2 + 1

24  = ( 12) ( 2 + 0)

25 =   122  + 0!

26  =  20 + (1 + 2)!

27 = (2 ! + 0! ) ^( 2 + 1)

28 = C(10-2, 2)

29 = [(2+0!)! / .2] -1

30 = (2 + 0!)! * (1/.2)

31 = 2^(1/.2) - 0!

32 = 10  + 22

33 = 2^(1/.2) + 0!

34 = (2^2)! + 10

35 = [ (2 + 1) 1] ^2  - 0!

36 = [ (2 + 1)!  ] ^2  - 0

37 = 2! + 0!)! ^( 2)  +  1

38 = (20-1) * 2

39 =  20*2 - 1

40 = 10 (2 + 2)

41 =  20 * 2 + 1

42 = 21*2  - 0

43 = 21 *2  + 0!

44 = 22(1 + 0!)

45 = p(10, 2)/2

46 = 10.2(bar)/0.2(bar)

47 = C(10,2) + 2

48 = (10/.2)  -  2

49 =((2+1)! + 0!)^2

50 = 10^2/2

51 = 102/2

52 = (10/.2) + 2

53 = ( 12/.2 bar) - 0!

54 = ( 12/.2 bar) + 0

55 = (12 - 0!)/.2

56 = P(10-2,2)

57 = 

58 =[ ( 2 + 0! )! / .1] -  2 

59 = 12/.2  - 0!

60 = 20 ( 2 + 1)

61 = 12/.2  + 0!

62 = [( 2 + 0! )!/ .1] + 2

63 = 2^( [ 2 + 1]!)  - 0!

64 = 2^[(2 + 1)! ] + 0

65 = C(12,2) - 0!

66 = C(12,2) - 0 

67 = C(12,2)  + 0!

68 = 

69 = 

70 = floor (sqrt (2)  /.2  )  *  10

71 = ceil(sqrt(2)/.2 * 10)

72 =  (12)  ( 2 + 0!)!

73 = 

74 = 

75 = 

76 =

77 =

78 = C(12+0!, 2)

79 = [( 0! / .1 bar ) ^2] -2

80 = [2^( 2 + 0!)] / .1

81 =[( 2^0/.1 bar)^2]

82 =

83 = [ (0!/.1 bar)^2] +2

84 =

85 =

86 =

87 =

88 = P(10,2) - 2

89 = (20/.2 bar) - 1

90 = C(10,2) * 2

91 = ( 20/.2 bar) + 1

92 = P (10,2) +2

93 =

94 =

95 = (20 -1)/.2

96 = floor [(sqrt (21))^(2 + 0!)]   =  floor [ (21)^(3/2)]    

97 = ceiling [ (sqrt (21))^(2 + 0!)]

98 = 10^2  - 2

99 = 20/.2 - 1

100 = 102  - 2

 

Above is edited. Total count = 85

Pangolin14  Dec 31, 2020
edited by Pangolin14  Dec 31, 2020

2 Online Users

avatar