Hey, CPhill (or whoever reading this), remember that 1-100 with only 2,0,2,1 question I posted? Well, I have gotten some progress on it...
1 = 2 + 0 - 2 + 1
2 = (2 + 0) / 2 + 1
3 = 2^2 - 1 - 0
4 = 2^2 - 0/1
5 = 2 + 0 + 2 + 1
6 = (2 + 1)2 + 0
7 = 10/2 + 2
8 = (2 + 1)! + 2 - 0
9 = (2 + 1)^2 + 0/2
10 = (20/2) / 1
11 = 20 / 2 + 1
12 = 12 + 0/2
13 = 12 + (0/2)!
14 = 12 + 2 + 0
15 = C(10,2) / ( 2! + 0! )
16 = 2^ ( 0! + 1! + 2!)
17 = 20 - 2 -1
18 = 20 - (2/1)!
19 = 20 - 2! + 1!
20 = 20 / (2 -1)
21 = 20 + 2 - 1
22 = 20 + 2/1
23 = 20 + 2 + 1
24 = ( 12) ( 2 + 0)
25 = 122 + 0!
26 = 20 + (1 + 2)!
27 = (2 ! + 0! ) ^( 2 + 1)
28 = C(10-2, 2)
29 = [(2+0!)! / .2] -1
30 = (2 + 0!)! * (1/.2)
31 = 2^(1/.2) - 0!
32 = 10 + 22
33 = 2^(1/.2) + 0!
34 = (2^2)! + 10
35 = [ (2 + 1) 1] ^2 - 0!
36 = [ (2 + 1)! ] ^2 - 0
37 = 2! + 0!)! ^( 2) + 1
38 = (20-1) * 2
39 = 20*2 - 1
40 = 10 (2 + 2)
41 = 20 * 2 + 1
42 = 21*2 - 0
43 = 21 *2 + 0!
44 = 22(1 + 0!)
45 = p(10, 2)/2
46 = 10.2(bar)/0.2(bar)
47 = C(10,2) + 2
48 = (10/.2) - 2
49 =((2+1)! + 0!)^2
50 = 10^2/2
51 = 102/2
52 = (10/.2) + 2
53 = ( 12/.2 bar) - 0!
54 = ( 12/.2 bar) + 0
55 = (12 - 0!)/.2
56 = P(10-2,2)
57 =
58 =[ ( 2 + 0! )! / .1] - 2
59 = 12/.2 - 0!
60 = 20 ( 2 + 1)
61 = 12/.2 + 0!
62 = [( 2 + 0! )!/ .1] + 2
63 = 2^( [ 2 + 1]!) - 0!
64 = 2^([2 + 1)! ] + 0
65 = C(12,2) - 0!
66 = C(12,2) - 0
67 = C(12,2) + 0!
68 =
69 =
70 =
71 =
72 = (12) ( 2 + 0!)!
73 =
74 =
75 =
76 =
77 =
78 = C(12+0!, 2)
79 = [( 0! / .1 bar ) ^2] -2
80 = [2^( 2 + 0!)] / .1
81 =[( 2^0/.1 bar)^2]
82 =
83 = [ (0!/.1 bar)^2] +2
84 =
85 =
86 =
87 =
88 = P(10,2) - 2
89 = (20/.2 bar) - 1
90 = C(10,2) * 2
91 = ( 20/.2 bar) + 1
92 = P (10,2) +2
93 =
94 =
95 = (20 -1)/.2
96 =
97 =
98 = 10^2 - 2
99 = 20/.2 - 1
100 = 102 - 2
Could you possibly fill in ANY of the empty spots, please? Thank you so much!
I remember doing one of these in 4th grade but with 4,4,4 and 4 instead of 2,0,2 and 1.
Very difficult to fill in many of the 70s or 80s (at least that's what I found)
floor (sqrt (2) /.2 ) * 10 = 70
That's about all I've got right now......maybe I'll think of some more.....!!!!
my math teacher said about 90 are possible this year with his rules, he himself getting only about 85. I've got around 81, I think..
1 = 2 + 0 - 2 + 1
2 = (2 + 0) / 2 + 1
3 = 2^2 - 1 - 0
4 = 2^2 - 0/1
5 = 2 + 0 + 2 + 1
6 = (2 + 1)2 + 0
7 = 10/2 + 2
8 = (2 + 1)! + 2 - 0
9 = (2 + 1)^2 + 0/2
10 = (20/2) / 1
11 = 20 / 2 + 1
12 = 12 + 0/2
13 = 12 + (0/2)!
14 = 12 + 2 + 0
15 = C(10,2) / ( 2! + 0! )
16 = 2^ ( 0! + 1! + 2!)
17 = 20 - 2 -1
18 = 20 - (2/1)!
19 = 20 - 2! + 1!
20 = 20 / (2 -1)
21 = 20 + 2 - 1
22 = 20 + 2/1
23 = 20 + 2 + 1
24 = ( 12) ( 2 + 0)
25 = 122 + 0!
26 = 20 + (1 + 2)!
27 = (2 ! + 0! ) ^( 2 + 1)
28 = C(10-2, 2)
29 = [(2+0!)! / .2] -1
30 = (2 + 0!)! * (1/.2)
31 = 2^(1/.2) - 0!
32 = 10 + 22
33 = 2^(1/.2) + 0!
34 = (2^2)! + 10
35 = [ (2 + 1) 1] ^2 - 0!
36 = [ (2 + 1)! ] ^2 - 0
37 = 2! + 0!)! ^( 2) + 1
38 = (20-1) * 2
39 = 20*2 - 1
40 = 10 (2 + 2)
41 = 20 * 2 + 1
42 = 21*2 - 0
43 = 21 *2 + 0!
44 = 22(1 + 0!)
45 = p(10, 2)/2
46 = 10.2(bar)/0.2(bar)
47 = C(10,2) + 2
48 = (10/.2) - 2
49 =((2+1)! + 0!)^2
50 = 10^2/2
51 = 102/2
52 = (10/.2) + 2
53 = ( 12/.2 bar) - 0!
54 = ( 12/.2 bar) + 0
55 = (12 - 0!)/.2
56 = P(10-2,2)
57 =
58 =[ ( 2 + 0! )! / .1] - 2
59 = 12/.2 - 0!
60 = 20 ( 2 + 1)
61 = 12/.2 + 0!
62 = [( 2 + 0! )!/ .1] + 2
63 = 2^( [ 2 + 1]!) - 0!
64 = 2^[(2 + 1)! ] + 0
65 = C(12,2) - 0!
66 = C(12,2) - 0
67 = C(12,2) + 0!
68 =
69 =
70 = floor (sqrt (2) /.2 ) * 10
71 = ceil(sqrt(2)/.2 * 10)
72 = (12) ( 2 + 0!)!
73 =
74 =
75 =
76 =
77 =
78 = C(12+0!, 2)
79 = [( 0! / .1 bar ) ^2] -2
80 = [2^( 2 + 0!)] / .1
81 =[( 2^0/.1 bar)^2]
82 =
83 = [ (0!/.1 bar)^2] +2
84 =
85 =
86 =
87 =
88 = P(10,2) - 2
89 = (20/.2 bar) - 1
90 = C(10,2) * 2
91 = ( 20/.2 bar) + 1
92 = P (10,2) +2
93 =
94 =
95 = (20 -1)/.2
96 = floor [(sqrt (21))^(2 + 0!)] = floor [ (21)^(3/2)]
97 = ceiling [ (sqrt (21))^(2 + 0!)]
98 = 10^2 - 2
99 = 20/.2 - 1
100 = 102 - 2
Above is edited. Total count = 85