We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+5
850
2
avatar

1-16+246-4096+...+4294967296

 Oct 28, 2015

Best Answer 

 #1
avatar+23317 
+30

1-16+246-4096+...+4294967296

 

 

If you mean:  1 - 16 + 256 - 4096 +-... + 4294967296          256 instead of 246 !!!

We have:

\(\begin{array}{rcl} a_1&=&1\\ a_2&=&- 16 \\ a_3&=&256 \\ a_4&=&- 4096 \\ \dots \\ a_9 &=& 4294967296\\ \boxed{~ r = \frac{a_{n}}{a_{n-1}} ~}\\ r&=&\frac{ a_4 }{ a_3 }=\frac{ a_3 }{ a_2 }=\frac{ a_2 }{ a_1 }\\ r&=&\frac{ - 4096}{ 256 }=\frac{ 256 }{ - 16 }=\frac{ - 16 }{ 1 }\\ r&=& - 16= - 16= - 16\\ \mathbf{r} &\mathbf{=}& \mathbf{- 16}\\ \boxed{~ a_n = a_1\cdot r^{n-1} \\ a_n = a_1\cdot (-16)^{n-1} ~}\\ a_1 &=& 1\cdot \left( - 16 \right)^{1-1} = 1\\ a_2 &=& 1\cdot \left( - 16 \right)^{2-1} = 1\cdot - 16= - 16\\ a_3 &=& 1\cdot \left( - 16 \right)^{3-1} = 1\cdot \left( - 16 \right)^2 = 256\\ a_4 &=& 1\cdot \left( - 16 \right)^{4-1} = 1\cdot \left( - 16 \right)^3 = - 4096 \\ \dots \\ a_{9} &=& 1\cdot \left(- 16 \right)^{9-1} = 1\cdot \left( - 16 \right)^8 = 4294967296\\ \boxed{~ sum_n = a_1\cdot\frac{1-r^n}{1-r} ~}\\ sum_9 &=& 1 \cdot \frac{1-(-16)^9}{1-(-16)} \\ sum_9 &=&\frac{1+68\ 719\ 476\ 736}{17} \\ sum_9 &=&\frac{68\ 719\ 476\ 737}{17} \\ \mathbf{sum_9} &\mathbf{=}& \mathbf{4\ 042\ 322\ 161}\\ \end{array}\)

 

1 - 16 + 256 - 4096 +-... + 4294967296 = 4 042 322 161

 

laugh

 Oct 29, 2015
edited by heureka  Oct 29, 2015
 #1
avatar+23317 
+30
Best Answer

1-16+246-4096+...+4294967296

 

 

If you mean:  1 - 16 + 256 - 4096 +-... + 4294967296          256 instead of 246 !!!

We have:

\(\begin{array}{rcl} a_1&=&1\\ a_2&=&- 16 \\ a_3&=&256 \\ a_4&=&- 4096 \\ \dots \\ a_9 &=& 4294967296\\ \boxed{~ r = \frac{a_{n}}{a_{n-1}} ~}\\ r&=&\frac{ a_4 }{ a_3 }=\frac{ a_3 }{ a_2 }=\frac{ a_2 }{ a_1 }\\ r&=&\frac{ - 4096}{ 256 }=\frac{ 256 }{ - 16 }=\frac{ - 16 }{ 1 }\\ r&=& - 16= - 16= - 16\\ \mathbf{r} &\mathbf{=}& \mathbf{- 16}\\ \boxed{~ a_n = a_1\cdot r^{n-1} \\ a_n = a_1\cdot (-16)^{n-1} ~}\\ a_1 &=& 1\cdot \left( - 16 \right)^{1-1} = 1\\ a_2 &=& 1\cdot \left( - 16 \right)^{2-1} = 1\cdot - 16= - 16\\ a_3 &=& 1\cdot \left( - 16 \right)^{3-1} = 1\cdot \left( - 16 \right)^2 = 256\\ a_4 &=& 1\cdot \left( - 16 \right)^{4-1} = 1\cdot \left( - 16 \right)^3 = - 4096 \\ \dots \\ a_{9} &=& 1\cdot \left(- 16 \right)^{9-1} = 1\cdot \left( - 16 \right)^8 = 4294967296\\ \boxed{~ sum_n = a_1\cdot\frac{1-r^n}{1-r} ~}\\ sum_9 &=& 1 \cdot \frac{1-(-16)^9}{1-(-16)} \\ sum_9 &=&\frac{1+68\ 719\ 476\ 736}{17} \\ sum_9 &=&\frac{68\ 719\ 476\ 737}{17} \\ \mathbf{sum_9} &\mathbf{=}& \mathbf{4\ 042\ 322\ 161}\\ \end{array}\)

 

1 - 16 + 256 - 4096 +-... + 4294967296 = 4 042 322 161

 

laugh

heureka Oct 29, 2015
edited by heureka  Oct 29, 2015
 #2
avatar+105634 
0

That is some good forensic maths there Heureka     wink laugh cool

 Oct 29, 2015

43 Online Users

avatar
avatar
avatar
avatar
avatar
avatar