1/8y(5y+64)=1/4(20+2y) multiply both sides by 8 to clear the fractions
y(5y + 64) = 2(20 + 2y) distribute terms on both sides
5y2 + 64y = 40 + 4y subtract 40 + 4y from both sides
5y2 + 60y - 40 = 0 see if we can factor
5(y2 + 12y -8) = 0 divide both sides by 5
y2 + 12y - 8 = 0 no factoring available..... using the on-site calculator, we have
$${{\mathtt{y}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{8}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{6}}\\
{\mathtt{y}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{6}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = -{\mathtt{12.633\: \!249\: \!580\: \!710\: \!799\: \!7}}\\
{\mathtt{y}} = {\mathtt{0.633\: \!249\: \!580\: \!710\: \!799\: \!7}}\\
\end{array} \right\}$$
1/8y(5y+64)=1/4(20+2y) multiply both sides by 8 to clear the fractions
y(5y + 64) = 2(20 + 2y) distribute terms on both sides
5y2 + 64y = 40 + 4y subtract 40 + 4y from both sides
5y2 + 60y - 40 = 0 see if we can factor
5(y2 + 12y -8) = 0 divide both sides by 5
y2 + 12y - 8 = 0 no factoring available..... using the on-site calculator, we have
$${{\mathtt{y}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{8}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{6}}\\
{\mathtt{y}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{6}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = -{\mathtt{12.633\: \!249\: \!580\: \!710\: \!799\: \!7}}\\
{\mathtt{y}} = {\mathtt{0.633\: \!249\: \!580\: \!710\: \!799\: \!7}}\\
\end{array} \right\}$$