+0  
 
0
694
1
avatar

1/8y(5y+64)=1/4(20+2y)

 Sep 17, 2014

Best Answer 

 #1
avatar+129849 
+5

1/8y(5y+64)=1/4(20+2y)     multiply both sides by 8 to clear the fractions

y(5y + 64) = 2(20 + 2y)        distribute terms on both sides

5y2 + 64y = 40 + 4y           subtract 40 + 4y from both sides

5y2 + 60y - 40 = 0               see if we can factor

 

5(y2  + 12y -8) = 0                divide both sides by 5

y2  + 12y  - 8 = 0                 no factoring available..... using the on-site calculator, we have

$${{\mathtt{y}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{8}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{6}}\\
{\mathtt{y}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{6}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = -{\mathtt{12.633\: \!249\: \!580\: \!710\: \!799\: \!7}}\\
{\mathtt{y}} = {\mathtt{0.633\: \!249\: \!580\: \!710\: \!799\: \!7}}\\
\end{array} \right\}$$

 Sep 17, 2014
 #1
avatar+129849 
+5
Best Answer

1/8y(5y+64)=1/4(20+2y)     multiply both sides by 8 to clear the fractions

y(5y + 64) = 2(20 + 2y)        distribute terms on both sides

5y2 + 64y = 40 + 4y           subtract 40 + 4y from both sides

5y2 + 60y - 40 = 0               see if we can factor

 

5(y2  + 12y -8) = 0                divide both sides by 5

y2  + 12y  - 8 = 0                 no factoring available..... using the on-site calculator, we have

$${{\mathtt{y}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{8}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{6}}\\
{\mathtt{y}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{6}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = -{\mathtt{12.633\: \!249\: \!580\: \!710\: \!799\: \!7}}\\
{\mathtt{y}} = {\mathtt{0.633\: \!249\: \!580\: \!710\: \!799\: \!7}}\\
\end{array} \right\}$$

CPhill Sep 17, 2014

1 Online Users