We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# (1+i)^16/(1-i)^15

0
1829
2

please show the steps

May 3, 2014

### Best Answer

#1
+101149
+8

Re: (1+i)^16/(1-i)^15

---------------------------------------------------------------------------------------------------------------------------

Let's simplify these separately.  We need to remember how to write complex numbers in exponential form. This is given by:

And

Where      z= ( a + bi)       r= l z l = √(a2 + b2)       tan-1(b/a) = θ

Let's do the first one

z= (1 + i)   r = √(12 + 12)  = √2     tan-1(1/1) = π/4

So we have  (√2)16 ei 16(π/4)   = (√2)16 ei (4π)  =  (2)8 [ cos (4π) + i sin (4π)] = 128 [1 + 0i] = 128

The second one (1 - i) is similar except that tan-1(-1/1) = -π/4

(√2)15 ei 15(-π/4)   = (√2)15 ei (-15π/4)  =  (√2)15 [ cos (-15π/4) + i sin (-15π/4)] =

64√2[ (1/√2) + (1/√2) i ] = 64 (1 + i)

Putting all this together, we have  (128) / [64 ( 1 + i)] = 2/(1 +i) and multiplying by the conjugate (1 -i) on top and bottom, we have  [2 (1- i)] /2 = (1 - i)

Whew!!.....that was a lot of work just for that, huh?

May 4, 2014

### 2+0 Answers

#1
+101149
+8
Best Answer

Re: (1+i)^16/(1-i)^15

---------------------------------------------------------------------------------------------------------------------------

Let's simplify these separately.  We need to remember how to write complex numbers in exponential form. This is given by:

And

Where      z= ( a + bi)       r= l z l = √(a2 + b2)       tan-1(b/a) = θ

Let's do the first one

z= (1 + i)   r = √(12 + 12)  = √2     tan-1(1/1) = π/4

So we have  (√2)16 ei 16(π/4)   = (√2)16 ei (4π)  =  (2)8 [ cos (4π) + i sin (4π)] = 128 [1 + 0i] = 128

The second one (1 - i) is similar except that tan-1(-1/1) = -π/4

(√2)15 ei 15(-π/4)   = (√2)15 ei (-15π/4)  =  (√2)15 [ cos (-15π/4) + i sin (-15π/4)] =

64√2[ (1/√2) + (1/√2) i ] = 64 (1 + i)

Putting all this together, we have  (128) / [64 ( 1 + i)] = 2/(1 +i) and multiplying by the conjugate (1 -i) on top and bottom, we have  [2 (1- i)] /2 = (1 - i)

Whew!!.....that was a lot of work just for that, huh?

CPhill May 4, 2014
#2
+890
+5

If you're multiplying, dividing or raising complex numbers to a power, it's best to work with polar form.

If z1=r1∠θ1 and z2=r2∠θ2, then the rules are, for multiplication, z1z2=r1r2∠(θ12), for division z1/z2=r1/r2∠(θ12) and raising to a power, zn=rn∠nθ.

So, (1+i)16=(√2∠(π/4))16=(√2)16∠(4π),

(1-i)15=(√2∠(-π/4))15=(√2)15∠(-15π/4),

and ∴ (1+i)16/(1-i)15=((√2)16∠(4π))/((√2)15∠(-15π/4))=√2∠(4π+15π/4)=√2∠(-π/4),

and switching back to algebraic form, the result is 1-i.

May 4, 2014