+0  
 
0
2
1540
5
avatar

(-1 + i)^7 working?

 May 28, 2014

Best Answer 

 #3
avatar+20831 
+8

$$\boxed{(-1 + i)^7 \quad? }$$

z=x+iy  $$\boxed{z=-1+i} \quad \Rightarrow x=-1, y=\textcolor[rgb]{1,0,0}{+}1$$

$$r=\sqrt{x^2+y^2}=\sqrt{(-1)^2+1^2}=\sqrt{2}$$

$$\phi = sign(y)*\cos^{-1}{\left(\frac{x}{r}\right)}
=\textcolor[rgb]{1,0,0}{+}\cos^{-1}(\frac{-1}{\sqrt{2}})
=\cos^{-1}(-\frac{\sqrt{2}}{2})=\frac{3}{4}\pi$$

$$\boxed{z=r*e^{i\phi}}$$

$$\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\
z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\
z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\
z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\
z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi}
= \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi\textcolor[rgb]{1,0,0}{-4\pi}}\right)\\$$

$$z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\$$

$$\boxed{e^{i\phi}=\cos{\phi}+i\sin{\phi}}$$

$$\\z^7=\left(\sqrt2\right)^7 \left[ \cos{(\pi+\frac{\pi}{4} )}+i*sin{(\pi+\frac{\pi}{4})} \right]\\
z^7=\left(\sqrt2\right)^7
\left[
\underbrace{\cos{\pi}}_{-1}\cos{\frac{\pi}{4}} - \underbrace{\sin{\pi}}_0\sin{\frac{\pi}{4}}
+i\left( \underbrace{\sin{\pi}}_0\cos{\frac{\pi}{4}}+\underbrace{\cos{\pi}}_{-1}\sin{\frac{\pi}{4}} \right)
\right]\\
z^7=\left(\sqrt2\right)^7 \left( -\cos{\frac{\pi}{4}}-i\sin{\frac{\pi}{4}}\right)$$

$$\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\
z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\
z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\
z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)$$

$$\\z^7=\frac{2^4}{2}\left(-1-i\right)\\\\
z^7=2^3\left(-1-i\right)\\
z^7=8\left(-1-i\right)\\
z^7=-8-8i\\$$

$$\boxed{(-1+i)^7=-8-8i}$$

.
 May 28, 2014
 #1
avatar+95284 
+8

Interesting!

$$^7C_0(-1)^0(i)^7+
^7C_1(-1)^1(i)^6+
^7C_2(-1)^2(i)^5+
^7C_3(-1)^3(i)^4+
^7C_4(-1)^4(i)^3+
^7C_5(-1)^5(i)^2+
^7C_6(-1)^6(i)^1+
^7C_7(-1)^7(i)^0\\\\$$

 

$$=(i)^7+
7(-1)^1(i^2)^3+
^7C_2*1*(i^4)i+
^7C_3*-1*(i^2)^2+
^7C_4*1*(i^2)i+
^7C_5*-1*(i^2)+
7*1(i)^1+-1\\\\$$

 

$$=(-1)i+
7*-1*(-1)^3+
^7C_2*1*(-1)i+
^7C_3*-1*(-1)^2+
^7C_4*1*(-1)i+
^7C_5*-1*(-1)+
7*1*(i)^1+
-1\\\\$$

 

$$=-i+7+^7C_2(i)+
^7C_3(-1)+
^7C_4(-i)+
^7C_5(-1)+
7i
-1\\\\$$

 

$$=-i+7+21i
-35
-i35
+21
+7i
-1\\\\
=i(-1+21-34+7-1)+(7-35+21-1)\\\\
=i(-8)-8\\\\
=-8-8i$$

 

NOTE: I would actually be surprised if this is not riddled with careless errors. (I have fixed one little error)

BUT that is the technique that i would use.

Thanks admin.  

 May 28, 2014
 #2
avatar+3080 
+5

$${\left({\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{i}\right)}^{{\mathtt{7}}} = {\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{8}}{i}$$

$${expand}{\left({\left({\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{i}\right)}^{{\mathtt{7}}}\right)} = {{i}}^{{\mathtt{7}}}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{6}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{5}}}{\mathtt{\,-\,}}{\mathtt{35}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{4}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{21}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{1}}$$

.
 May 28, 2014
 #3
avatar+20831 
+8
Best Answer

$$\boxed{(-1 + i)^7 \quad? }$$

z=x+iy  $$\boxed{z=-1+i} \quad \Rightarrow x=-1, y=\textcolor[rgb]{1,0,0}{+}1$$

$$r=\sqrt{x^2+y^2}=\sqrt{(-1)^2+1^2}=\sqrt{2}$$

$$\phi = sign(y)*\cos^{-1}{\left(\frac{x}{r}\right)}
=\textcolor[rgb]{1,0,0}{+}\cos^{-1}(\frac{-1}{\sqrt{2}})
=\cos^{-1}(-\frac{\sqrt{2}}{2})=\frac{3}{4}\pi$$

$$\boxed{z=r*e^{i\phi}}$$

$$\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\
z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\
z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\
z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\
z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi}
= \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi\textcolor[rgb]{1,0,0}{-4\pi}}\right)\\$$

$$z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\$$

$$\boxed{e^{i\phi}=\cos{\phi}+i\sin{\phi}}$$

$$\\z^7=\left(\sqrt2\right)^7 \left[ \cos{(\pi+\frac{\pi}{4} )}+i*sin{(\pi+\frac{\pi}{4})} \right]\\
z^7=\left(\sqrt2\right)^7
\left[
\underbrace{\cos{\pi}}_{-1}\cos{\frac{\pi}{4}} - \underbrace{\sin{\pi}}_0\sin{\frac{\pi}{4}}
+i\left( \underbrace{\sin{\pi}}_0\cos{\frac{\pi}{4}}+\underbrace{\cos{\pi}}_{-1}\sin{\frac{\pi}{4}} \right)
\right]\\
z^7=\left(\sqrt2\right)^7 \left( -\cos{\frac{\pi}{4}}-i\sin{\frac{\pi}{4}}\right)$$

$$\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\
z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\
z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\
z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)$$

$$\\z^7=\frac{2^4}{2}\left(-1-i\right)\\\\
z^7=2^3\left(-1-i\right)\\
z^7=8\left(-1-i\right)\\
z^7=-8-8i\\$$

$$\boxed{(-1+i)^7=-8-8i}$$

heureka May 28, 2014
 #4
avatar+27357 
+5

$$$$(-1+i)^7=(-1+i)^2(-1+i)^2(-1+i)^2(-1+i)$$\\
$$(-1+i)^2 = 1-2i+i^2=1-2i-1=-2i$$\\
Therefore $$(-1+i)^7=(-2i)^3(-1+i)=(-2)^3i^3(-1+i)=8i(-1+i)=-8-8i$$

.
 May 28, 2014
 #5
avatar+95284 
0

WOW Alan,

I sure know how to make a mountain out of a mole hill!

I'd double you score it I could!

 May 29, 2014

19 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.