+0

# (-1 + i)^7

0
1
985
5

(-1 + i)^7 working?

Guest May 28, 2014

#3
+19207
+8

$$\boxed{(-1 + i)^7 \quad? }$$

z=x+iy  $$\boxed{z=-1+i} \quad \Rightarrow x=-1, y={+}1$$

$$r=\sqrt{x^2+y^2}=\sqrt{(-1)^2+1^2}=\sqrt{2}$$

$$\phi = sign(y)*\cos^{-1}{\left(\frac{x}{r}\right)} ={+}\cos^{-1}(\frac{-1}{\sqrt{2}}) =\cos^{-1}(-\frac{\sqrt{2}}{2})=\frac{3}{4}\pi$$

$$\boxed{z=r*e^{i\phi}}$$

$$\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\ z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\ z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\ z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\ z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi} = \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi{-4\pi}}\right)\\$$

$$z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\$$

$$\boxed{e^{i\phi}=\cos{\phi}+i\sin{\phi}}$$

$$\\z^7=\left(\sqrt2\right)^7 \left[ \cos{(\pi+\frac{\pi}{4} )}+i*sin{(\pi+\frac{\pi}{4})} \right]\\ z^7=\left(\sqrt2\right)^7 \left[ \underbrace{\cos{\pi}}_{-1}\cos{\frac{\pi}{4}} - \underbrace{\sin{\pi}}_0\sin{\frac{\pi}{4}} +i\left( \underbrace{\sin{\pi}}_0\cos{\frac{\pi}{4}}+\underbrace{\cos{\pi}}_{-1}\sin{\frac{\pi}{4}} \right) \right]\\ z^7=\left(\sqrt2\right)^7 \left( -\cos{\frac{\pi}{4}}-i\sin{\frac{\pi}{4}}\right)$$

$$\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\ z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\ z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\ z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)$$

$$\\z^7=\frac{2^4}{2}\left(-1-i\right)\\\\ z^7=2^3\left(-1-i\right)\\ z^7=8\left(-1-i\right)\\ z^7=-8-8i\\$$

$$\boxed{(-1+i)^7=-8-8i}$$

heureka  May 28, 2014
Sort:

#1
+92206
+8

Interesting!

$$^7C_0(-1)^0(i)^7+ ^7C_1(-1)^1(i)^6+ ^7C_2(-1)^2(i)^5+ ^7C_3(-1)^3(i)^4+ ^7C_4(-1)^4(i)^3+ ^7C_5(-1)^5(i)^2+ ^7C_6(-1)^6(i)^1+ ^7C_7(-1)^7(i)^0\\\\$$

$$=(i)^7+ 7(-1)^1(i^2)^3+ ^7C_2*1*(i^4)i+ ^7C_3*-1*(i^2)^2+ ^7C_4*1*(i^2)i+ ^7C_5*-1*(i^2)+ 7*1(i)^1+-1\\\\$$

$$=(-1)i+ 7*-1*(-1)^3+ ^7C_2*1*(-1)i+ ^7C_3*-1*(-1)^2+ ^7C_4*1*(-1)i+ ^7C_5*-1*(-1)+ 7*1*(i)^1+ -1\\\\$$

$$=-i+7+^7C_2(i)+ ^7C_3(-1)+ ^7C_4(-i)+ ^7C_5(-1)+ 7i -1\\\\$$

$$=-i+7+21i -35 -i35 +21 +7i -1\\\\ =i(-1+21-34+7-1)+(7-35+21-1)\\\\ =i(-8)-8\\\\ =-8-8i$$

NOTE: I would actually be surprised if this is not riddled with careless errors. (I have fixed one little error)

BUT that is the technique that i would use.

Melody  May 28, 2014
#2
+3080
+5

$${\left({\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{i}\right)}^{{\mathtt{7}}} = {\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{8}}{i}$$

$${expand}{\left({\left({\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{i}\right)}^{{\mathtt{7}}}\right)} = {{i}}^{{\mathtt{7}}}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{6}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{5}}}{\mathtt{\,-\,}}{\mathtt{35}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{4}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{21}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{1}}$$

#3
+19207
+8

$$\boxed{(-1 + i)^7 \quad? }$$

z=x+iy  $$\boxed{z=-1+i} \quad \Rightarrow x=-1, y={+}1$$

$$r=\sqrt{x^2+y^2}=\sqrt{(-1)^2+1^2}=\sqrt{2}$$

$$\phi = sign(y)*\cos^{-1}{\left(\frac{x}{r}\right)} ={+}\cos^{-1}(\frac{-1}{\sqrt{2}}) =\cos^{-1}(-\frac{\sqrt{2}}{2})=\frac{3}{4}\pi$$

$$\boxed{z=r*e^{i\phi}}$$

$$\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\ z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\ z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\ z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\ z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi} = \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi{-4\pi}}\right)\\$$

$$z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\$$

$$\boxed{e^{i\phi}=\cos{\phi}+i\sin{\phi}}$$

$$\\z^7=\left(\sqrt2\right)^7 \left[ \cos{(\pi+\frac{\pi}{4} )}+i*sin{(\pi+\frac{\pi}{4})} \right]\\ z^7=\left(\sqrt2\right)^7 \left[ \underbrace{\cos{\pi}}_{-1}\cos{\frac{\pi}{4}} - \underbrace{\sin{\pi}}_0\sin{\frac{\pi}{4}} +i\left( \underbrace{\sin{\pi}}_0\cos{\frac{\pi}{4}}+\underbrace{\cos{\pi}}_{-1}\sin{\frac{\pi}{4}} \right) \right]\\ z^7=\left(\sqrt2\right)^7 \left( -\cos{\frac{\pi}{4}}-i\sin{\frac{\pi}{4}}\right)$$

$$\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\ z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\ z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\ z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)$$

$$\\z^7=\frac{2^4}{2}\left(-1-i\right)\\\\ z^7=2^3\left(-1-i\right)\\ z^7=8\left(-1-i\right)\\ z^7=-8-8i\\$$

$$\boxed{(-1+i)^7=-8-8i}$$

heureka  May 28, 2014
#4
+26626
+5

(-1+i)^7=(-1+i)^2(-1+i)^2(-1+i)^2(-1+i)$$\\$$(-1+i)^2 = 1-2i+i^2=1-2i-1=-2i$$\\ Therefore$$(-1+i)^7=(-2i)^3(-1+i)=(-2)^3i^3(-1+i)=8i(-1+i)=-8-8i

Alan  May 28, 2014
#5
+92206
0

WOW Alan,

I sure know how to make a mountain out of a mole hill!

I'd double you score it I could!

Melody  May 29, 2014

### 22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details