+0  
 
0
1
985
5
avatar

(-1 + i)^7 working?

Guest May 28, 2014

Best Answer 

 #3
avatar+19207 
+8

$$\boxed{(-1 + i)^7 \quad? }$$

z=x+iy  $$\boxed{z=-1+i} \quad \Rightarrow x=-1, y=\textcolor[rgb]{1,0,0}{+}1$$

$$r=\sqrt{x^2+y^2}=\sqrt{(-1)^2+1^2}=\sqrt{2}$$

$$\phi = sign(y)*\cos^{-1}{\left(\frac{x}{r}\right)}
=\textcolor[rgb]{1,0,0}{+}\cos^{-1}(\frac{-1}{\sqrt{2}})
=\cos^{-1}(-\frac{\sqrt{2}}{2})=\frac{3}{4}\pi$$

$$\boxed{z=r*e^{i\phi}}$$

$$\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\
z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\
z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\
z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\
z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi}
= \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi\textcolor[rgb]{1,0,0}{-4\pi}}\right)\\$$

$$z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\$$

$$\boxed{e^{i\phi}=\cos{\phi}+i\sin{\phi}}$$

$$\\z^7=\left(\sqrt2\right)^7 \left[ \cos{(\pi+\frac{\pi}{4} )}+i*sin{(\pi+\frac{\pi}{4})} \right]\\
z^7=\left(\sqrt2\right)^7
\left[
\underbrace{\cos{\pi}}_{-1}\cos{\frac{\pi}{4}} - \underbrace{\sin{\pi}}_0\sin{\frac{\pi}{4}}
+i\left( \underbrace{\sin{\pi}}_0\cos{\frac{\pi}{4}}+\underbrace{\cos{\pi}}_{-1}\sin{\frac{\pi}{4}} \right)
\right]\\
z^7=\left(\sqrt2\right)^7 \left( -\cos{\frac{\pi}{4}}-i\sin{\frac{\pi}{4}}\right)$$

$$\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\
z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\
z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\
z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)$$

$$\\z^7=\frac{2^4}{2}\left(-1-i\right)\\\\
z^7=2^3\left(-1-i\right)\\
z^7=8\left(-1-i\right)\\
z^7=-8-8i\\$$

$$\boxed{(-1+i)^7=-8-8i}$$

heureka  May 28, 2014
Sort: 

5+0 Answers

 #1
avatar+92206 
+8

Interesting!

$$^7C_0(-1)^0(i)^7+
^7C_1(-1)^1(i)^6+
^7C_2(-1)^2(i)^5+
^7C_3(-1)^3(i)^4+
^7C_4(-1)^4(i)^3+
^7C_5(-1)^5(i)^2+
^7C_6(-1)^6(i)^1+
^7C_7(-1)^7(i)^0\\\\$$

 

$$=(i)^7+
7(-1)^1(i^2)^3+
^7C_2*1*(i^4)i+
^7C_3*-1*(i^2)^2+
^7C_4*1*(i^2)i+
^7C_5*-1*(i^2)+
7*1(i)^1+-1\\\\$$

 

$$=(-1)i+
7*-1*(-1)^3+
^7C_2*1*(-1)i+
^7C_3*-1*(-1)^2+
^7C_4*1*(-1)i+
^7C_5*-1*(-1)+
7*1*(i)^1+
-1\\\\$$

 

$$=-i+7+^7C_2(i)+
^7C_3(-1)+
^7C_4(-i)+
^7C_5(-1)+
7i
-1\\\\$$

 

$$=-i+7+21i
-35
-i35
+21
+7i
-1\\\\
=i(-1+21-34+7-1)+(7-35+21-1)\\\\
=i(-8)-8\\\\
=-8-8i$$

 

NOTE: I would actually be surprised if this is not riddled with careless errors. (I have fixed one little error)

BUT that is the technique that i would use.

Thanks admin.  

Melody  May 28, 2014
 #2
avatar+3080 
+5

$${\left({\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{i}\right)}^{{\mathtt{7}}} = {\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{8}}{i}$$

$${expand}{\left({\left({\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{i}\right)}^{{\mathtt{7}}}\right)} = {{i}}^{{\mathtt{7}}}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{6}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{5}}}{\mathtt{\,-\,}}{\mathtt{35}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{4}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{21}}{\mathtt{\,\times\,}}{{i}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{1}}$$

admin  May 28, 2014
 #3
avatar+19207 
+8
Best Answer

$$\boxed{(-1 + i)^7 \quad? }$$

z=x+iy  $$\boxed{z=-1+i} \quad \Rightarrow x=-1, y=\textcolor[rgb]{1,0,0}{+}1$$

$$r=\sqrt{x^2+y^2}=\sqrt{(-1)^2+1^2}=\sqrt{2}$$

$$\phi = sign(y)*\cos^{-1}{\left(\frac{x}{r}\right)}
=\textcolor[rgb]{1,0,0}{+}\cos^{-1}(\frac{-1}{\sqrt{2}})
=\cos^{-1}(-\frac{\sqrt{2}}{2})=\frac{3}{4}\pi$$

$$\boxed{z=r*e^{i\phi}}$$

$$\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\
z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\
z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\
z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\
z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi}
= \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi\textcolor[rgb]{1,0,0}{-4\pi}}\right)\\$$

$$z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\$$

$$\boxed{e^{i\phi}=\cos{\phi}+i\sin{\phi}}$$

$$\\z^7=\left(\sqrt2\right)^7 \left[ \cos{(\pi+\frac{\pi}{4} )}+i*sin{(\pi+\frac{\pi}{4})} \right]\\
z^7=\left(\sqrt2\right)^7
\left[
\underbrace{\cos{\pi}}_{-1}\cos{\frac{\pi}{4}} - \underbrace{\sin{\pi}}_0\sin{\frac{\pi}{4}}
+i\left( \underbrace{\sin{\pi}}_0\cos{\frac{\pi}{4}}+\underbrace{\cos{\pi}}_{-1}\sin{\frac{\pi}{4}} \right)
\right]\\
z^7=\left(\sqrt2\right)^7 \left( -\cos{\frac{\pi}{4}}-i\sin{\frac{\pi}{4}}\right)$$

$$\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\
z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\
z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\
z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)$$

$$\\z^7=\frac{2^4}{2}\left(-1-i\right)\\\\
z^7=2^3\left(-1-i\right)\\
z^7=8\left(-1-i\right)\\
z^7=-8-8i\\$$

$$\boxed{(-1+i)^7=-8-8i}$$

heureka  May 28, 2014
 #4
avatar+26626 
+5

$$$$(-1+i)^7=(-1+i)^2(-1+i)^2(-1+i)^2(-1+i)$$\\
$$(-1+i)^2 = 1-2i+i^2=1-2i-1=-2i$$\\
Therefore $$(-1+i)^7=(-2i)^3(-1+i)=(-2)^3i^3(-1+i)=8i(-1+i)=-8-8i$$

Alan  May 28, 2014
 #5
avatar+92206 
0

WOW Alan,

I sure know how to make a mountain out of a mole hill!

I'd double you score it I could!

Melody  May 29, 2014

22 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details