+0  
 
+1
331
2
avatar+40 

1/i=(1/-1)^0.5=-1^0.5=i

    =i/-1=-i

yomyhomies  Feb 20, 2017

Best Answer 

 #2
avatar+92806 
+10

Thanks Max,

I will try to explain :)

 

 

\(i^0=1\\ i^1=i\\ i^2=-1\\ i^3=-i\\ i^4=1\\~\\ \text{for integer values of n the pattern can be continued}\\ i^{4n}=1\\ i^{4n+1}=i\\ i^{4n+2}=-1\\ i^{4n+3}=-i\\~\\ \text{for n=-1}\\ i^{(4*-1)+3}=i^{-1}=\frac{1}{i}=-i\)

 

Now I will try to explain your logic error when you found i^-1=i

 

When you square a negative number you get a positive number.  When you square root a positive number there are really 2 answers.  By convention we take the positive answer.

See if you can understand this with my example :)

 

\( \frac{1}{-4}=\sqrt{\frac{1}{(-4)^2}}=\frac{1}{4}\qquad \text{obviously not true} \\\frac{1}{i}=\sqrt{\frac{1}{(i)^2}}=\sqrt{\frac{1}{-1}}=\sqrt{-1}=i \qquad \text{Also not true}\)

Melody  Feb 20, 2017
 #1
avatar+7002 
+5

\(\boxed{i^{4n-1} = -i}\)

\(1/i\\ =i^{4\cdot 0 - 1}\\ =-i\)

MaxWong  Feb 20, 2017
 #2
avatar+92806 
+10
Best Answer

Thanks Max,

I will try to explain :)

 

 

\(i^0=1\\ i^1=i\\ i^2=-1\\ i^3=-i\\ i^4=1\\~\\ \text{for integer values of n the pattern can be continued}\\ i^{4n}=1\\ i^{4n+1}=i\\ i^{4n+2}=-1\\ i^{4n+3}=-i\\~\\ \text{for n=-1}\\ i^{(4*-1)+3}=i^{-1}=\frac{1}{i}=-i\)

 

Now I will try to explain your logic error when you found i^-1=i

 

When you square a negative number you get a positive number.  When you square root a positive number there are really 2 answers.  By convention we take the positive answer.

See if you can understand this with my example :)

 

\( \frac{1}{-4}=\sqrt{\frac{1}{(-4)^2}}=\frac{1}{4}\qquad \text{obviously not true} \\\frac{1}{i}=\sqrt{\frac{1}{(i)^2}}=\sqrt{\frac{1}{-1}}=\sqrt{-1}=i \qquad \text{Also not true}\)

Melody  Feb 20, 2017

13 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.