Thanks Max,
I will try to explain :)
\(i^0=1\\ i^1=i\\ i^2=-1\\ i^3=-i\\ i^4=1\\~\\ \text{for integer values of n the pattern can be continued}\\ i^{4n}=1\\ i^{4n+1}=i\\ i^{4n+2}=-1\\ i^{4n+3}=-i\\~\\ \text{for n=-1}\\ i^{(4*-1)+3}=i^{-1}=\frac{1}{i}=-i\)
Now I will try to explain your logic error when you found i^-1=i
When you square a negative number you get a positive number. When you square root a positive number there are really 2 answers. By convention we take the positive answer.
See if you can understand this with my example :)
\( \frac{1}{-4}=\sqrt{\frac{1}{(-4)^2}}=\frac{1}{4}\qquad \text{obviously not true} \\\frac{1}{i}=\sqrt{\frac{1}{(i)^2}}=\sqrt{\frac{1}{-1}}=\sqrt{-1}=i \qquad \text{Also not true}\)
Thanks Max,
I will try to explain :)
\(i^0=1\\ i^1=i\\ i^2=-1\\ i^3=-i\\ i^4=1\\~\\ \text{for integer values of n the pattern can be continued}\\ i^{4n}=1\\ i^{4n+1}=i\\ i^{4n+2}=-1\\ i^{4n+3}=-i\\~\\ \text{for n=-1}\\ i^{(4*-1)+3}=i^{-1}=\frac{1}{i}=-i\)
Now I will try to explain your logic error when you found i^-1=i
When you square a negative number you get a positive number. When you square root a positive number there are really 2 answers. By convention we take the positive answer.
See if you can understand this with my example :)
\( \frac{1}{-4}=\sqrt{\frac{1}{(-4)^2}}=\frac{1}{4}\qquad \text{obviously not true} \\\frac{1}{i}=\sqrt{\frac{1}{(i)^2}}=\sqrt{\frac{1}{-1}}=\sqrt{-1}=i \qquad \text{Also not true}\)