+0  
 
0
3423
2
avatar+1836 

1.  Convert 35 from base 10 to base 2. (You do not need to include the subscript 2 in this answer.)

 

2.  The decimal number 61 is a 2-digit number. Find the smallest positive integer $B$ so that when we express the decimal number 61 as a base $B$ number we still get a 2-digit number.

 May 24, 2015

Best Answer 

 #2
avatar+129852 
+5

a) 352 =1*(2)^5  + 0*(2)^4 + 0*(2)^3 + 0* (2)^2 +1*(2)^1  +1*(2)^0  = 100011 in base 2

 

b)  Notice that, in base 7, 6*(7)^1 + 6*(7)^0 = 42 + 6 = 48.... and this is too small

 

However, in base 8, 7(8) ....  7*(8)^1 + 5*(8)^0  =  56 + 5 = 61 ......so 8 is the smallest possible base that  will still produce a two digit number equal to 61 ......the notation is 758

 

 

 May 24, 2015
 #1
avatar+1836 
0

Sorry everybody for all of the questions!!! I missed you all!! I haven't been on here for a while :)

 May 24, 2015
 #2
avatar+129852 
+5
Best Answer

a) 352 =1*(2)^5  + 0*(2)^4 + 0*(2)^3 + 0* (2)^2 +1*(2)^1  +1*(2)^0  = 100011 in base 2

 

b)  Notice that, in base 7, 6*(7)^1 + 6*(7)^0 = 42 + 6 = 48.... and this is too small

 

However, in base 8, 7(8) ....  7*(8)^1 + 5*(8)^0  =  56 + 5 = 61 ......so 8 is the smallest possible base that  will still produce a two digit number equal to 61 ......the notation is 758

 

 

CPhill May 24, 2015

0 Online Users