+0  
 
0
1484
3
avatar+148 

$${\frac{\left({{\mathtt{10}}}^{{\mathtt{102}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{{\mathtt{100}}}\right)}{{{\mathtt{10}}}^{{\mathtt{100}}}}}$$

 Nov 20, 2014

Best Answer 

 #3
avatar+26387 
+5

$${\frac{\left({{\mathtt{10}}}^{{\mathtt{102}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{{\mathtt{100}}}\right)}{{{\mathtt{10}}}^{{\mathtt{100}}}}}$$=?

 

$$\dfrac{(10^{102}+10^{100}) }{ 10^{100} } \\\\
= \dfrac{(10^{100}* 10^{2}+ 10^{100} ) }{ 10^{100} }\\\\
= \dfrac{ 10^{100}* (10^{2}+ 1 ) }{ 10^{100} }\\\\
= \dfrac{ 10^{100} }{ 10^{100} } *(10^{2}+ 1 ) \\\\
=10^{2}+ 1\\
=100+1 \\
=101$$

.
 Nov 20, 2014
 #1
avatar+129849 
0
CPhill Nov 20, 2014
 #2
avatar+129849 
+5

My answer just "disappeared".......!!!!

Anyway....the answer is 101

 

 Nov 20, 2014
 #3
avatar+26387 
+5
Best Answer

$${\frac{\left({{\mathtt{10}}}^{{\mathtt{102}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{{\mathtt{100}}}\right)}{{{\mathtt{10}}}^{{\mathtt{100}}}}}$$=?

 

$$\dfrac{(10^{102}+10^{100}) }{ 10^{100} } \\\\
= \dfrac{(10^{100}* 10^{2}+ 10^{100} ) }{ 10^{100} }\\\\
= \dfrac{ 10^{100}* (10^{2}+ 1 ) }{ 10^{100} }\\\\
= \dfrac{ 10^{100} }{ 10^{100} } *(10^{2}+ 1 ) \\\\
=10^{2}+ 1\\
=100+1 \\
=101$$

heureka Nov 20, 2014

1 Online Users

avatar