$${\frac{\left({{\mathtt{10}}}^{{\mathtt{102}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{{\mathtt{100}}}\right)}{{{\mathtt{10}}}^{{\mathtt{100}}}}}$$
$${\frac{\left({{\mathtt{10}}}^{{\mathtt{102}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{{\mathtt{100}}}\right)}{{{\mathtt{10}}}^{{\mathtt{100}}}}}$$=?
$$\dfrac{(10^{102}+10^{100}) }{ 10^{100} } \\\\
= \dfrac{(10^{100}* 10^{2}+ 10^{100} ) }{ 10^{100} }\\\\
= \dfrac{ 10^{100}* (10^{2}+ 1 ) }{ 10^{100} }\\\\
= \dfrac{ 10^{100} }{ 10^{100} } *(10^{2}+ 1 ) \\\\
=10^{2}+ 1\\
=100+1 \\
=101$$
$${\frac{\left({{\mathtt{10}}}^{{\mathtt{102}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{{\mathtt{100}}}\right)}{{{\mathtt{10}}}^{{\mathtt{100}}}}}$$=?
$$\dfrac{(10^{102}+10^{100}) }{ 10^{100} } \\\\
= \dfrac{(10^{100}* 10^{2}+ 10^{100} ) }{ 10^{100} }\\\\
= \dfrac{ 10^{100}* (10^{2}+ 1 ) }{ 10^{100} }\\\\
= \dfrac{ 10^{100} }{ 10^{100} } *(10^{2}+ 1 ) \\\\
=10^{2}+ 1\\
=100+1 \\
=101$$