+0  
 
0
590
3
avatar

11*101*10001*100000001*10000000000000001*100000000000000000000000000000001...

If factor number m has n zeros, then factor number m+1 will have 2n+1 zeros.

 

 

The product will always be a repunit with 2^m decimal digits, right?

Guest Sep 25, 2014

Best Answer 

 #1
avatar+17744 
+10

I am not certain of the use of "repunit" in this problem.

The factors are (10^1 + 1)(10^2 + 1)(10^4 + 1)(10^8 + 1)(10^16 + 1)(10^32 + 1)...

The number of digits in the answer will be the sum of the powers of 10 in the product plus 1.

1 factor --> 2 digits      --> 2^1

2 factors --> 4 digits     --> 2^2

3 factors --> 8 digits     --> 2^3

4 factors --> 16 digits    --> 2^4

5 factors --> 32 digits    --> 2^5

Yes, you are correct!

geno3141  Sep 26, 2014
 #1
avatar+17744 
+10
Best Answer

I am not certain of the use of "repunit" in this problem.

The factors are (10^1 + 1)(10^2 + 1)(10^4 + 1)(10^8 + 1)(10^16 + 1)(10^32 + 1)...

The number of digits in the answer will be the sum of the powers of 10 in the product plus 1.

1 factor --> 2 digits      --> 2^1

2 factors --> 4 digits     --> 2^2

3 factors --> 8 digits     --> 2^3

4 factors --> 16 digits    --> 2^4

5 factors --> 32 digits    --> 2^5

Yes, you are correct!

geno3141  Sep 26, 2014
 #2
avatar+87303 
0

Nice one, geno !!!

 

CPhill  Sep 26, 2014
 #3
avatar
0

Thx for your answer!

 

What I meant with "repunit" is a number where alle the digits are 1, such as 11, 1111 and 111111111111.

Guest Sep 26, 2014

12 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.