+0  
 
0
288
3
avatar

1298cosx=2770sinx+325.8

Guest Oct 16, 2014

Best Answer 

 #2
avatar+19207 
+10

1298cosx=2770sinx+325.8

$$\begin{array}{rcl}
1298*cos(x) &=& 2770*sin(x)+325.8\\
\underbrace{1298}_{x_p}*\underbrace{cos(x)}_{n_x}
-\underbrace{2770}_{y_p}*\underbrace{sin(x)}_{n_y} &=& \underbrace{325.8}_d \qquad \text{line: } \vec{p}*\vec{n}=d \quad \vec{p}=(x_p,y_p)=(1298,-2770) \\
\tan{(\alpha)} &=& \frac{y_p}{x_p} = -\frac{2770}{1298}\\\\
cos(x-\alpha) &=& \frac{d}{ \sqrt{x_p^2+y_p^2} } \\\\
sin(x-\alpha) &=& \frac{ \sqrt{x_p^2+y_p^2-d^2}}{\sqrt{x_p^2+y_p^2} }\\\\
tan(x-\alpha) &=& \pm \sqrt{\frac{ x_p^2+y_p^2 }{d^2} -1 )} \\\\
x_{1,2} -\alpha &=& tan^{-1} { \left( \pm \sqrt{\frac{ x_p^2+y_p^2 }{d^2} -1 \right) } }\\\\
x_{1,2} &=& \alpha + tan^{-1} { \left( \pm \sqrt{\frac{ x_p^2+y_p^2 }{d^2} -1 \right) } }\\\\
x_{1,2} &=& tan^{-1} { \left( \frac{y_p}{x_p} \right) } + tan^{-1} { \left( \pm \sqrt{\frac{ x_p^2+y_p^2 }{d^2} -1 \right) } }\\\\
x_{1,2} &=& tan^{-1} { \left( \frac{-2770}{1298} \right) } + tan^{-1} { \left( \pm \sqrt{\frac{ (1298)^2+(-2770)^2 }{(325.8)^2} -1 \right) } }\\\\
x_{1,2} &=& ( -64.8925847874\ensurement{^{\circ}} \pm n*\pi) +(\pm 83.8861674476\ensurement{^{\circ}} \pm n*\pi)\\\\
x_1 &=& -64.8925847874\ensurement{^{\circ}} + 83.8861674476\ensurement{^{\circ}} \pm n*2\pi\\\\
x_2 &=& -64.8925847874\ensurement{^{\circ}} - 83.8861674476\ensurement{^{\circ}} \pm n*2\pi\\\\
x_1 &=& 18.9935826602\ensurement{^{\circ}} \pm n*2\pi\\\\
x_2 &=& -148.778752235\ensurement{^{\circ}} \pm n*2\pi
\end{array}$$

heureka  Oct 16, 2014
Sort: 

3+0 Answers

 #1
avatar+26625 
+5

See if the following graph helps

 

Intersecting curves

.

Alan  Oct 16, 2014
 #2
avatar+19207 
+10
Best Answer

1298cosx=2770sinx+325.8

$$\begin{array}{rcl}
1298*cos(x) &=& 2770*sin(x)+325.8\\
\underbrace{1298}_{x_p}*\underbrace{cos(x)}_{n_x}
-\underbrace{2770}_{y_p}*\underbrace{sin(x)}_{n_y} &=& \underbrace{325.8}_d \qquad \text{line: } \vec{p}*\vec{n}=d \quad \vec{p}=(x_p,y_p)=(1298,-2770) \\
\tan{(\alpha)} &=& \frac{y_p}{x_p} = -\frac{2770}{1298}\\\\
cos(x-\alpha) &=& \frac{d}{ \sqrt{x_p^2+y_p^2} } \\\\
sin(x-\alpha) &=& \frac{ \sqrt{x_p^2+y_p^2-d^2}}{\sqrt{x_p^2+y_p^2} }\\\\
tan(x-\alpha) &=& \pm \sqrt{\frac{ x_p^2+y_p^2 }{d^2} -1 )} \\\\
x_{1,2} -\alpha &=& tan^{-1} { \left( \pm \sqrt{\frac{ x_p^2+y_p^2 }{d^2} -1 \right) } }\\\\
x_{1,2} &=& \alpha + tan^{-1} { \left( \pm \sqrt{\frac{ x_p^2+y_p^2 }{d^2} -1 \right) } }\\\\
x_{1,2} &=& tan^{-1} { \left( \frac{y_p}{x_p} \right) } + tan^{-1} { \left( \pm \sqrt{\frac{ x_p^2+y_p^2 }{d^2} -1 \right) } }\\\\
x_{1,2} &=& tan^{-1} { \left( \frac{-2770}{1298} \right) } + tan^{-1} { \left( \pm \sqrt{\frac{ (1298)^2+(-2770)^2 }{(325.8)^2} -1 \right) } }\\\\
x_{1,2} &=& ( -64.8925847874\ensurement{^{\circ}} \pm n*\pi) +(\pm 83.8861674476\ensurement{^{\circ}} \pm n*\pi)\\\\
x_1 &=& -64.8925847874\ensurement{^{\circ}} + 83.8861674476\ensurement{^{\circ}} \pm n*2\pi\\\\
x_2 &=& -64.8925847874\ensurement{^{\circ}} - 83.8861674476\ensurement{^{\circ}} \pm n*2\pi\\\\
x_1 &=& 18.9935826602\ensurement{^{\circ}} \pm n*2\pi\\\\
x_2 &=& -148.778752235\ensurement{^{\circ}} \pm n*2\pi
\end{array}$$

heureka  Oct 16, 2014
 #3
avatar+92206 
0

Very impressive Heureka :)

Melody  Oct 16, 2014

10 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details