$$\left({\mathtt{14}}{\mathtt{\,\times\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{25}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{22}}{\mathtt{\,\times\,}}{\mathtt{26}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{8}}{\mathtt{\,\times\,}}{\mathtt{11}}{\mathtt{\,\times\,}}{\mathtt{100}}\right) = {\mathtt{135\,900}}$$
.$$\left({\mathtt{14}}{\mathtt{\,\times\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{25}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{22}}{\mathtt{\,\times\,}}{\mathtt{26}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{100}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{8}}{\mathtt{\,\times\,}}{\mathtt{11}}{\mathtt{\,\times\,}}{\mathtt{100}}\right) = {\mathtt{135\,900}}$$