You could honestly use the calculator for this:) http://web2.0calc.com/
$${\mathtt{15\,848.931\: \!924\: \!6}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{4.2}}} = {\mathtt{251\,188\,643.150\: \!781\: \!535\: \!596\: \!498\: \!5}}$$
You could honestly use the calculator for this:) http://web2.0calc.com/
$${\mathtt{15\,848.931\: \!924\: \!6}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{4.2}}} = {\mathtt{251\,188\,643.150\: \!781\: \!535\: \!596\: \!498\: \!5}}$$
15848.9319246 * 10^4.2 = ?
$$\boxed{15848.9319246 \approx 10^{4.2} }\\
15848.9319246 * 10^{4.2} \approx 10^{4.2} *10^{4.2}=10^{4.2+4.2}=10^{8.4}$$
15848.9319246 * 10^4.2 $$\approx$$ 10^8.4 = 251188643.151
Now I am curious
$${{\mathtt{10}}}^{{\mathtt{4.2}}} = {\mathtt{15\,848.931\: \!924\: \!611\: \!134\: \!852}}$$
My goodness Heureka, what make you think of that ? ??
Hi Melody,
$$\\15848.9319246 * 10^{4.2} = 15848.9319246 * 10^{4+0.2}\\
= 15848.9319246 * 10^4*10^{0.2} \quad | \quad 10^{0.2} \approx 1.58489319246\\
= 15848.9319246 * 10^4*1.58489319246\\
\Rightarrow
=10^{0.2}*10^4* 10^4*10^{0.2}\\
=10^{8.4}$$
Thanks Heureka,
Yes I know that it is true.
I just don't understand why you even thought of it?
I mean did something stand out to you that I am not seeing?
It seems to have been a strange thing to have thought of.
Until a few years ago, the German language was a prerequisite for engineering or mathematics.
Heureka gave a good example here (and many other places on this forum) of why this was –and should still be.
Use the calculator too.
Answer: 251,188,643.1507815355964985 is the answer.