+0  
 
0
287
3
avatar

(1cis60)^1991+(1cis(-60))^1991+1=1 i need to prove this but the calculator wont give me the exact answers

Guest Oct 25, 2014

Best Answer 

 #3
avatar+90988 
+10

$$\\LHS\\
=(cis60)^{1991}+(cis(-60))^{1991}+1\\
=(e^{60i})^{1991}+(e^{-60i})^{1991}+1\\
=(e^{60*1991*i})+(e^{-60*{1991}*i})+1\\
=(cos(60*1991)+isin(60*1991))+(cos(-60*1991)+isin(-60*1991))+1\\
Now\;\; cos(-\theta)=cos(\theta)\;\;and\;\;sin(-\theta)=-sin(\theta)\\
so\\
=cos(60*1991)+cos(-60*1991)+isin(60*1991)+isin(-60*1991)+1\\
=cos(60*1991)+cos(-60*1991)+i[sin(60*1991)+sin(-60*1991)]+1\\
=cos(60*1991)+cos(60*1991)+i[sin(60*1991)-sin(60*1991)]+1\\
=2cos(60*1991)+i[0]+1\\
=2cos(60*1991)+1\\
=2cos(60*[6*331+5])+1\\
=2cos(60*6*331+60*5])+1\\
=2cos(360*331+60*5)+1\\
=2cos(60*5)+1\\
=2cos(300)+1\\
=2\times\frac{1}{2}+1\\
=1+1\\$$

$$\\=2\\
\ne 1\\
$The equation is not true$$$

 

So I agree with Alan's answer.    

Melody  Oct 26, 2014
Sort: 

3+0 Answers

 #1
avatar+17653 
+5

Using deMoivre's formula:

(1cis60)^1991  =  (1^1991)cis(60*1991)  =  cis(119460)  =  cis(300)  =  .5 + -√(3)/2i

(1cis(-60))^1991  =  (1^1991)cis(-60*1991)  =  cis(-119460)  =  cis(-300)  =  .5 + √(3)/2i

Adding:   .5 + -√(3)/2i  +  .5 + √(3)/2i  = 1 + 0i  =  1

geno3141  Oct 25, 2014
 #2
avatar+90988 
0

Alan's answer is here.

http://web2.0calc.com/questions/cis-for-melody

Alan's and Gino's answers are different.   

Melody  Oct 26, 2014
 #3
avatar+90988 
+10
Best Answer

$$\\LHS\\
=(cis60)^{1991}+(cis(-60))^{1991}+1\\
=(e^{60i})^{1991}+(e^{-60i})^{1991}+1\\
=(e^{60*1991*i})+(e^{-60*{1991}*i})+1\\
=(cos(60*1991)+isin(60*1991))+(cos(-60*1991)+isin(-60*1991))+1\\
Now\;\; cos(-\theta)=cos(\theta)\;\;and\;\;sin(-\theta)=-sin(\theta)\\
so\\
=cos(60*1991)+cos(-60*1991)+isin(60*1991)+isin(-60*1991)+1\\
=cos(60*1991)+cos(-60*1991)+i[sin(60*1991)+sin(-60*1991)]+1\\
=cos(60*1991)+cos(60*1991)+i[sin(60*1991)-sin(60*1991)]+1\\
=2cos(60*1991)+i[0]+1\\
=2cos(60*1991)+1\\
=2cos(60*[6*331+5])+1\\
=2cos(60*6*331+60*5])+1\\
=2cos(360*331+60*5)+1\\
=2cos(60*5)+1\\
=2cos(300)+1\\
=2\times\frac{1}{2}+1\\
=1+1\\$$

$$\\=2\\
\ne 1\\
$The equation is not true$$$

 

So I agree with Alan's answer.    

Melody  Oct 26, 2014

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details