\(\int_{}^{}\int_{}^{}\)π₯2+ π¦2 ππ΄; π ={ ( π₯, π¦ ) | β1 β€ π₯ β€ 1, 0 β€ π¦ β€ 2 }
That means \(\displaystyle\int^{2}_{0}\int^{1}_{-1}x^2+y^2 dx dy\)
\(\displaystyle\int^{2}_{0}\int^{1}_{-1}x^2+y^2 dx dy\\ =\displaystyle\int^{2}_{0}\left[\dfrac{x^3}{3}+xy^2\right]^{1}_{-1}dy\\ =\displaystyle\int^{2}_{0}\left(\dfrac{2}{3}+2y^2\right)dy\\ =\left[\dfrac{2y}{3}+\dfrac{2y^3}{3}\right]^{2}_{0}\\ =\dfrac{20}{3}\)