+0  
 
+1
159
5
avatar+1442 

1:  The line \(y = (3x + 7)/4 \) intersects the circle \(x^2 + y^2 = 25\) at A and B. Find the length of chord \(\overline{AB} \).

 

and

 

2:  Points A(0,0), B(9,6) and C(6,12) are vertices of triangle ABC. Point D is on segment AB such that 2(AD) = DB, point E is on segment BC such that 2(BE) = EC and point F is on segment CA such that 2(CF) = FA. What is the ratio of the area of triangle DEF to the area of triangle ABC? Express your answer as a common fraction.


Thanks!

AnonymousConfusedGuy  Jun 14, 2018
 #3
avatar+20004 
0

2:  Points A(0,0), B(9,6) and C(6,12) are vertices of triangle ABC.
Point D is on segment AB such that 2(AD) = DB,
point E is on segment BC such that 2(BE) = EC and
point F is on segment CA such that 2(CF) = FA.
What is the ratio of the area of triangle DEF to the area of triangle ABC?
Express your answer as a common fraction.

\(\begin{array}{|rcll|} \hline D &=& \dbinom{9}{6}\cdot \dfrac13 \\ &=& \dbinom{3}{2} \\\\ E &=& \dbinom{9}{6} + \left( \dbinom{6}{12} - \dbinom{9}{6} \right)\cdot \dfrac13 \\ &=& \dbinom{9}{6} + \dbinom{-3}{6}\cdot \dfrac13 \\ &=& \dbinom{9}{6} + \dbinom{-1}{2} \\ &=& \dbinom{8}{8} \\\\ F &=& \dbinom{6}{12}\cdot \dfrac23 \\ &=& \dbinom{12}{24}\cdot \dfrac13 \\ &=& \dbinom{4}{8} \\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \text{Area}_\text{ABC} &=& \frac12 \left( 0\cdot 6 - 9\cdot 0 + 9 \cdot 12 - 6 \cdot 6 + 6\cdot 0 - 0 \cdot 12 \right) \\ &=& \frac12 \left( 9 \cdot 12 - 6 \cdot 6 \right) \\ &=& \frac12 \left( 72 \right) \\ &=& 36 \\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \text{Area}_\text{DEF} &=& \frac12 \left( 3\cdot 8 - 8 \cdot 2 + 8 \cdot 8 - 4 \cdot 8 + 4\cdot 2 - 3 \cdot 8 \right) \\ &=& \frac12 \left( 24-16+64-32+8-24 \right) \\ &=& \frac12 \left( 24 \right) \\ &=& 12 \\ \hline \end{array}\\ \begin{array}{|rcll|} \hline \dfrac { \text{Area}_\text{DEF} } {\text{Area}_\text{ABC}} &=& \dfrac{12}{36} = \dfrac13 \\ \hline \end{array}\)

 

Source:  https://www.youtube.com/watch?v=0KjG8Pg6LGk

 

 

laugh

heureka  Jun 15, 2018
edited by heureka  Jun 15, 2018
edited by heureka  Jun 15, 2018
edited by heureka  Jun 15, 2018
 #4
avatar+20004 
0

1: 

The line 

\(y = (3x + 7)/4 \)

y = (3x + 7)/4

intersects the circle

\(x^2 + y^2 = 25 \)

x^2 + y^2 = 25

at A and B.

Find the length of chord .

 

\(\begin{array}{|rcll|} \hline x^2+y^2 &=& 25 \quad & | \quad y = \dfrac{3x+7}{4} \\ x^2+ \left(\dfrac{3x+7}{4}\right)^2 &=& 25 \\\\ x^2+ \dfrac{(3x+7)^2}{16} &=& 25 \quad & | \quad \cdot 16 \\\\ 16x^2+ (3x+7)^2 &=& 25\cdot 16 \\ 16x^2+ (3x+7)^2 &=& 400 \\ 16x^2+ 9x^2+42x + 49 &=& 400 \\ 25x^2+42x + 49-400 &=& 0 \\ 25x^2+42x - 351 &=& 0 \\ x &=& \dfrac{-42\pm \sqrt{42^2-4\cdot 25\cdot(-351) } } {2\cdot 25} \\\\ x &=& \dfrac{-42\pm \sqrt{1764+100\cdot(351) } } {50} \\\\ x &=& \dfrac{-42\pm \sqrt{36864} } {50} \\\\ x &=& \dfrac{-42\pm 192} {50} \\\\ x_a & =& \dfrac{-42 + 192} {50} \\ \mathbf{x_a} &\mathbf{=}& \mathbf{3} \\ y_a &=& \dfrac{3\cdot 3+7}{4} \\ \mathbf{y_a} & \mathbf{=}& \mathbf{ 4 } \\\\ \mathbf{x_b} & \mathbf{=}& \mathbf{\dfrac{-42 - 192} {50} } \\ x_b &=& -4.68 \\ y_b &=& \dfrac{3\cdot (-4.68)+7}{4} \\ \mathbf{y_b} & \mathbf{=}& \mathbf{-1.76} \\ \hline \end{array}\)

 

The length of chord AB:

\(\begin{array}{|rcll|} \hline && \sqrt{(x_a-x_b)^2+(y_a-y_b)^2} \\ &=& \sqrt{[3-(-4.68)]^2+[4-(-1.76)]^2} \\ &=& \sqrt{(3+4.68)^2+(4+1.76)^2} \\ &=& \sqrt{7.68^2+5.76^2} \\ &=& \sqrt{92.16} \\ &=& 9.6 \\ \hline \end{array}\)

 

The length of chord AB is 9.6

 

laugh

heureka  Jun 15, 2018
 #5
avatar+1442 
+1

Thanks so much Heureka!  Still not sure what happened on the other one haha!

AnonymousConfusedGuy  Jun 15, 2018

42 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.